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Summary

Fast behaviors, seen in varied life forms, are often considered to be stereotypic and
reflexive and the control neural circuits to be hard-wired. However, many such reflexes
have been shown to respond in a context-dependent manner. The work presented in
this dissertation focuses on uncovering the principles of one such context-dependent
behavior - antennal positioning in insects.

Insect antennae acquire multimodal sensory cues that are required for a wide range
of behaviors. These include odor, temperature, humidity, as well as mechanical vi-
brations from the surroundings. Each modality encodes a different aspect of the en-
vironment and is used appropriately to control behavior. Antennal vibrations, for
instance, provide feedback relevant for flight stabilization, and is used to modulate
wing movements on short, stroke-to-stroke, timescales. Olfactory cues, on the other
hand, indicate presence of food and mates, and are used to alter flight trajectories over
longer timescales of multiple wing-strokes. Therefore, for a proper behavioral response,
the antennae must optimally acquire sensory cues over multiple timescales. Context-
dependent modulation of the antennae perhaps enhances their functionality by tuning
their dynamic range.

This dissertation focuses on one context, namely airflow, and its effect on antennal
positioning. Hawkmoths, and diverse insects, actively position their antennae at the
onset of flight by bringing them forward. During flight, they dynamically alter this
position based on airflow. Two antennal mechanosensors are involved in this behavior,
one being the Böhm’s bristles, which monitors and feeds back the position of the
antennae, and the second being the Johnston’s organs, which are stimulated by frontal
airflow generated during flight.

The first part of the thesis concerns the control algorithms that underlie the sensory
integration of antennal mechanosensory input to produce airflow-dependent antennal
positioning. Using the Oleander hawkmoth, Daphnis nerii, as a system of study,
the behavior is investigated with a combination of experiments and computational
techniques. We find that the dynamics of this behavior can be captured by a tunable
feedback loop consisting of two components. One, a negative feedback loop that stably
maintains antennae at a preferred position, or set-point, using positional feedback from
the Böhm’s bristles. Two, a dynamic set-point that is modulated by airflow (and other
context specific cues). Furthermore, a minimalistic model neural circuit based on these
components simulate airflow-dependent modulation of antennae. Such circuits could
enable moths to maintain stable antennal position on short timescales while retaining
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context-based flexibility over longer durations.

The latter half of the thesis focuses on each of the individual components. The neural
mechanisms underlying modulation of set-point by the Johnston’s organs are investi-
gated using behavioral and electrophysiological experiments. The positional feedback,
sensed and encoded by the Böhm’s bristles, is investigated using biomechanical models.
These provide an understanding of how airflow-dependent, or more generally, context-
dependent antennal positioning arises as a result of these individual components. As
a whole, this dissertation provides a conceptual framework that utilizes experimental
and computational techniques to formally describe and understand context-dependent
behaviors.
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Sammanfattning

Snabba rörelser hos olika djur ses ofta som stereotypa reflexer, genererade av fixa neu-
rala sensomotoriska återkopplingar. Många reflexer har dock visat sig variera beroende
på situationen. Denna avhandling fokuserar på att försöka förstå en sådan situations-
beroende reflex: insekters positionering av antennerna.

Antennerna hos insekter är fyllda med sensorer av olika typ som behövs för alla
möjliga beteenden. Där finns t.ex. sensorer för lukt, temperatur, fuktighet och vibra-
tioner. Var och en fångar upp viktig information från omgivningen som används för att
påverka olika beteenden. Vibrationer, till exempel, ger återkoppling som behövs för att
styra vingarnas rörelser så att insekten kan flyga stabilt. Detta kräver att återkoppling-
en är mycket snabb, från ett vingslag till nästa. Lukt, som används för att lokalisera
föda och partners, påverkar flygningen över betydligt längre tidsskalor. Antennernas
position påverkar alla dessa sensorer samtidigt och det är därför inte förvånande att
reflexerna som styr positionen behöver anpassas till situationen.

Denna avhandling fokuseras på hur antennernas positionering påverkas av en speci-
fik faktor, nämligen vindhastigheten. Fjärilar, och många andra insekter, vinklar aktivt
sina antenner framåt i samband med att de börjar flyga. Under flygningen anpassas
sedan vinkeln aktivt beroende på vindhastigheten. Detta beteende är kopplat till två
olika mekanosensorer; dels Böhm’s hårsensorer som registrerar antennens position, dels
Johnston’s organ, vibrationssensorer som bl.a. reagerar på vindhastigheten.

Första delen av avhandlingen presenterar en kartläggning av hur de olika senso-
riska signalerna integreras för att åstadkomma den vindberoende positioneringen av
antennerna. Specifikt studeras här fjärilsarten Oleandersvärmare som analyseras med
en kombination av beteendeexperiment och datormodeller. Vi visar att beteendet kan
beskrivas som en justerbar reflex bestående av två delar: dels en snabb negativ åter-
kopplingsloop som håller positionen vid ett börvärde baserat på signaler från Böhm’s
hårsensorer; dels en långsammare justering av detta börvärde baserat på vindhastighe-
ten. En minimalistiskt neural modell baserad på dessa delar kan i simuleringar repro-
ducera beteendet kvantitativt. Modellen förklarar hur fjärilar kan hålla antennernas
positionen stabil med snabba reaktioner på störningar samtidigt som de kan anpassa
positionen baserat på långsammare signaler.

I avhandlingens andra halva analyseras systemets komponenter i detalj. De neura-
la mekanismerna bakom hur Johnston’s organ ändrar börvärdet undersöks med såväl
beteende- som elektrofysiologiska experiment. Den snabba återkopplingen via Böhm’s
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Sammanfattning (Swedish summary)

hårsensorer analyseras med hjälp av biomekaniska modeller. Detta ger en förklarings-
modell för hur antennernas positionsreflex påverkas av vindhastigheten, och mer ge-
nerellt av situationen, baserat på samspelet mellan systemets delar. Som helhet utgör
denna avhandling ett exempel på hur experimentella och beräkningstekniska metoder
kan kombineras för att entydigt beskriva och förstå situationsberoende beteenden.
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Organization of the thesis

Chapter 1: This chapter provides a conceptual framework to investigate multi-sensory
behaviors in insects. Behaviors are the cumulative output of neural circuits and the
associated biomechanics of body parts in response to input sensory stimuli. The neu-
romechanical black box underlying these behaviors can be mathematically described
using control theory. This representation also allows for an iterative investigation of
the properties of individual components, thereby unravelling the neural computation
performed by circuits that control behavior. This conceptual framework is used in the
subsequent chapters to investigate airflow-dependent antennal positioning in hawk-
moths.

Chapter 2: Airflow-dependent antennal positioning is investigated using a combina-
tion of experiments and computational tools (framework provided in Chapter 1). The
structure of the underlying neural circuits is first determined based on experiments.
Next, their properties are extracted and modelled using control theoretic tools. Finally,
a possible model neural network is proposed that could maintain antennae stably on
short timescales, and flexibly on longer ones.

Chapter 3: Johnston’s organ (JO) mediated set-point modulation is investigated
using behavior and electromyograms. Using unilateral JO restriction experiments the
structure of the modulation circuit is determined. Next, using fine flagellar vibrations
to stimulate the JOs while simultaneous recording from the antennal muscles, the
responses of modulation circuit is characterized.

Chapter 4: The antennal hair plate (Böhm’s bristles) mechanosensory system, that is
the transformation of antennal positioning to sensory hair stimulation, is investigated
in this chapter. Because the shape, size and position of the hair plates on the antennal
joint dictate its encoding properties, describing this transformation requires the use of
biomechanical models. Here, we develop the necessary tools and use it to estimate the
sensitivity of the antennal hair plates to antennal movements.
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Chapter 1

Peering into the neuromechanical
black box

1.1 Introduction
Neuroethology is the study of the neural basis of animal behavior. The foundation of
both neurobiology and ethology lies in the description of animal behavior (Tinbergen,
1963), albeit at different levels. Whereas systems-level algorithms try to explain be-
haviors as responses to sensory stimuli experienced by an animal (Tinbergen, 1963),
neuroethologists go a step further and investigate the neural implementation of such
algorithms (Ewert, 1980).

Identifying the neural basis of animal behavior poses several challenges. First, the
behavioral response to a sensory context must be consistent and robust. Behaviors
with high variability are harder to investigate due to the possibility of unaccounted
sensory inputs as well as changes in internal states of the animal (Lorenz and Ley-
hausen, 1973; Tinbergen, 1951). Second, the nervous system should be sufficiently
tractable to identify brain regions (or neural circuits) involved in behavior (Bargmann,
2012; Bargmann and Marder, 2013). This would enable experimental manipulations
that highlight the neural mechanisms behind control of behavior. However, this ap-
proach could also run into problems if redundant circuits control the same behavior
(Ramaswamy, 2019). Third, the behavior should arise as a result of processing cues
from multiple sensory modalities, i.e. the behavior should be sufficiently multimodal.
Studying such behaviors would provide insights into the general principles of neural
computation (Wessnitzer and Webb, 2006).

Insects, in this context, are excellent study systems for neuroethologists. Behaviors
in insects, especially those involved in escape, are typically fast and robust (Card,
2012). These allow for clear mathematical descriptions of motor outputs as a function
of sensory inputs (Cowan et al., 2006; Land and Collett, 1974; Roth et al., 2016;
Sponberg et al., 2015). Additionally, the small brain size implies comparatively fewer
neurons may be involved, which would imply less redundancy in their implementation
(Ramaswamy, 2019). Finally, insects typically combine information from multiple
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1.2. Mathematical description of a behavior

modalities to generate context-dependent behaviors (Card, 2012; Hengstenberg, 1993;
Ritzmann et al., 2012; Ritzmann and Büschges, 2007; Staudacher et al., 2005). Here,
we present a conceptual framework to investigate behaviors in insects, which can be
extended to more complex behaviors.

1.2 Mathematical description of a behavior
All behaviors can be described as neuromechanical “black boxes”, or input-output
systems, which convert sensory cues (inputs) into body/limb movements (outputs)
[Figure 1.1; Rosenblueth et al. (1943)]. Such descriptions can be algorithmic or math-
ematical or a combination of both (Marr and Poggio, 1976; Rosenblueth and Wiener,
1945). The neural networks that carry out this transformation are called sensorimotor
circuits.

Investigating sensorimotor circuits that underlie behaviors first requires an explicit
description of behavior (Krakauer et al., 2017; Marr and Poggio, 1976). Qualitative
descriptions, that capture the broad features of a behavior, can be a set of algorithms
that are activated by various sensory cues (e.g. stickleback courtship - Tinbergen, 1951;
Drosophila courtship - Greenspan and Ferveur, 2000; odor tracking - Kennedy, 1983;
Saxena et al., 2018; van Breugel and Dickinson, 2014). Mathematical descriptions, on
the other hand, quantitatively describe the temporal dynamics of a behavior in detail
(e.g. chasing behavior of houseflies: Land and Collett, 1974; nematode movement:
Stephens et al., 2008; odor tracking: Vergassola et al., 2007). Typically, behavioral
descriptions begin as algorithmic descriptions, and slowly evolve into mathematical
descriptions as fine temporal data is gathered.

Mathematical descriptions have been shown to be incredibly useful. Because such an
approach accurately describes the computations performed by sensorimotor circuits,
it gives critical insights into what is being computed (Krakauer et al., 2017; Marr
and Poggio, 1976; Reichardt et al., 1979). For instance, the Hassenstein-Reichardt
detector, which describes motion detection computation in insects, was conceptualized
by investigating visual cue induced turning in beetles (Borst et al., 2010; Reichardt,
1961; Reichardt et al., 1979). Additionally, identifying the mathematical computation
performed by sensorimotor circuits provides crucial insights on their neural implemen-
tation. For example, the famous Jeffress model, a neural implementation of binau-
ral sound localization, was built on studies identifying interaural time difference as
the computation underlying sound localization in humans (Carr, 1993; Jeffress, 1948;
Stevens and Newman, 1936).

Because of these reasons, our conceptual framework begins with a mathematical de-
scription of behavior. We chose to use the formal language of control theory to describe
behaviors because of its well-defined notion of feedback, a property that is critical to
nervous systems (Wiener, 1961). Additionally, it allows a convenient traversal from
describing the overall computation to identifying its likely neural basis (Cowan et al.,
2014; Roth et al., 2014) In this section, we describe how these tools may be applied to
formally describe behavior. Although this approach is universal for animals or robots,
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Fig. 1.1 : Neuromechanical black box describing insect behavior
(A) Multimodal behaviors in insects. Illustrative examples of multiple sensory modalities
guiding the movements of an insect’s body parts. Such behaviors can provide a convenient
means of investigating multi-sensory integration in nervous systems. (B) Neuromechanical
black box. The multimodal behavior can be mathematically described as a neuromechani-
cal black box (B(s)) that takes in sensory stimuli as input and produces the relevant motor
output. The neuromechanical black box (B(s)) can be broken down into three components -
sensory systems (S(s)), neural systems (N(s)) and biomechanical systems (M(s)). Sensory-
feedback and reafferent-feedback connections modify the inputs to the sensory system (red
circles), thereby changing the dynamics of the system. Additionally, neural systems integrate
information from multiple modalities (cyan circles) to control signals to biomechanical sys-
tems that move insect body parts.
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1.2. Mathematical description of a behavior

we focus in particular on insect behavior, which is the main topic of this thesis.

In the language of control theory, the transformation of sensory cues to body move-
ments can be represented as a transfer function (Figure 1.1). It captures the input-
output characteristics of the neuromechanical black box as a mathematical function
in the Laplace (complex frequency) domain (Åström and Murray, 2008; Oppenheim
et al., 1996). The input to such a transfer function is a time-series, which also can be
represented as a weighted integral (superposition) of several different sinusoids of mul-
tiple frequencies (Fourier Transforms - Oppenheim et al. (1996)). For each sinusoidal
frequency, the transfer function specifies the change in amplitude and phase caused
by the black box. The output is also a timeseries, which is effectively a superposi-
tion of the input sinusoid frequencies, but whose individual amplitude and phase has
been uniquely modified by the transfer function (Åström and Murray, 2008; Dorf and
Bishop, 2017).

Because the transfer function specifies how the black box alters sinusoids over the entire
frequency range, construction of such a description requires the inputs to be ‘frequency
rich’ (Åström and Murray, 2008; Dorf and Bishop, 2017). Typically, sensory inputs
are provided in the form of impulses, steps (Beatus et al., 2015; Natesan et al., 2019;
Ristroph et al., 2010; Whitehead et al., 2015), sinusoids (Fender and Nye, 1961; Stark,
1968), sum-of-sinusoids (Dyhr et al., 2013; Roth et al., 2011, 2016), band-limited Gaus-
sian noise and m-sequences (Marmarelis, 1978; Ringach and Shapley, 2004; Theobald
et al., 2010a,b) in order to estimate transfer functions.

This approach assumes that the sensory-motor transformation is linear (Linear Time
Invariant systems - Åström and Murray, 2008; Dorf and Bishop, 2017; Oppenheim
et al., 1996). In a linear system, the output timeseries has exactly the same sinusoidal
frequencies present in the input sinusoid, albeit altered in amplitude and phase. That is,
the transfer function can only modify the input sinusoids and cannot generate sinusoids
of new frequencies. Linearity of behavior, and the validity of this assumption, can be
explicitly confirmed using experiments that test for superposition and time-invariance
of input-output transformations (e.g. pupil response: Clynes, 1961; jamming avoidance
response in electric fish: Madhav et al., 2013; refuge tracking in electric fish: Roth
et al., 2011; flower tracking in hawkmoths: Roth et al., 2016). However, linear transfer
functions are sufficient to capture the dynamics for a wide variety of behaviors such
as thigmotaxis in cockroaches, head stabilization in flies, eye movements in humans,
chasing behavior in houseflies, etc. (Cowan et al., 2006; Hengstenberg, 1993; Land and
Collett, 1974; Robinson, 1981). Additionally, several non-linear behaviors turn out to
be linear over a small range of stimuli, allowing the use of these methods to describe
the behavior over the linear range (pupil response: Stark and Sherman (1957); head
stabilization in locusts: Thorson (1964)).

Description of behavior using linear (control theoretic) models is prevalent in the study
of behaviors and was especially prolific in the latter half of the 20th century (Buchner,
1984; McIntyre and Bizzi, 1993; Reichardt and Poggio, 1976; Stark, 1968; Varjú, 1977).
During this time, these methods were applied to describe a diverse set of insect behav-
iors including prey capture in mantids (Mittelstaedt, 1957, 1962), visual orientation in
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walking beetles (Reichardt, 1961; Varju, 1975; Varjú, 1976), optomotor reactions in flies
(Götz, 1975; Götz et al., 1979), small object tracking in houseflies (Land and Collett,
1974), head stabilization of blowflies (Hengstenberg et al., 1986; Hengstenberg, 1991,
1993) and flower feeding in hawkmoths (Farina et al., 1994, 1995; Kern and Varjú,
1998). A substantial portion of this has been to understand how insects process opti-
cal information and use it to maintain a constant visual orientation (Reichardt et al.,
1979). In additional to setting the foundation of describing the “phenomenological
level”, i.e. the input-output transformation of behaviors, these studies also developed
several innovative experimental paradigms to investigate the subsystems of the black
box (Götz, 1968; Reichardt, 1961; Reichardt and Poggio, 1976). By using newer tech-
nologies recent studies build on this foundation, to describe thigmotaxis, abdominal
response and luminance-dependent visual processing in insects (Cowan et al., 2006;
Dyhr et al., 2013; Sponberg et al., 2015), as well as better describe already studied
behaviors such as head stabilization and flower feeding in better detail (Goulard et al.,
2015; Roth et al., 2016; Viollet and Zeil, 2013). These descriptions highlight the sensory
modalities involved, the information derived from each modality, and their influence
on behavior.

1.3 Structure of the neuromechanical black box
To identify the neural circuits and the algorithms underlying these reflexes (Marr and
Poggio, 1976; Reichardt et al., 1979), we need to identify the components of the black
box. The neuromechanical black box can be coarsely broken down into three subsys-
tems - sensory system, neural system, and biomechanical system (Figure 1.1). The
sensory system transforms an external sensory context by amplifying the relevant cues
and filtering out the rest. The neural system uses this filtered input to appropriately
control the behavior by generating relevant motor commands, which are then carried
out by the biomechanical plant.

This coarse categorization explicitly decomposes the overall input-output transforma-
tion (behavior) into sensing, control/computation and movement, each with its own
dynamics. The act of identifying them as these three subsystems also brings in modu-
larity. For instance, optic flow is sensed by the “visual system”, which can be the same
for different optic-flow dependent behaviors (e.g. optic flow based positioning of the
antenna, head and abdomen - Hengstenberg, 1993; Khurana and Sane, 2016; Taylor
et al., 2013). Similarly, different sensory modalities which activate the same body part
can use the same biomechanical system to produce different types of movement (e.g. vi-
sual and mechanosensory control of flight - Bartussek and Lehmann, 2016; Mamiya and
Dickinson, 2015; Sherman and Dickinson, 2004). Additionally, this approach allows the
flow of information between the components, especially due to feedback, to be easily
represented and analyzed.

There are two ways in which information could flow between subsystems. In the first
type, information flows serially from one subsystem to the other. These are called feed-
forward or open loop systems [Figure 1.2; Åström and Murray (2008)]. Prey capture
in cuttlefish is a good example of feedforward (open loop) behavior. Cuttlefish visually
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Fig. 1.2 : Flow of information inside a neuromechanical black box
Flow of information between the components of a neuromechanical black box can be classified
into three categories - (i) feedforward systems where information flows sequentially from one
component to the other, (ii) sensory feedback systems where self-motion changes the stimuli
sensed by the insect, and (iii) reafferent feedback systems where the neural control signal
directly affects the inputs to the sensory system. The flow of information affects both the
overall transfer function (B(s)) and also the type of control exerted by the neural system
(N(s)). Estimating the neural computation underlying a particular behavior requires both
the knowledge of the contribution of other components and the flow of information between
them.
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track their prey, such as shrimp, and capture them using a rapid tentacle strike that
lasts ~30 ms (Messenger, 1968). Once prey capture is initiated, the visual input at
the time of initiation is sequentially transformed to generate the tentacle strike. If the
prey moves after initiation, the capture is unsuccessful (Messenger, 1968). Addition-
ally, absence of visual input after initiation does not affect capture (if the prey does not
move). This is the key feature of feedforward behaviors – once initiated the behavior
does not consider movements of the prey, or disturbances to its own movements, and
moves in a stereotypical manner. Such systems typically underly rapid movements
such as escape responses and prey capture behaviors (Card, 2012; Messenger, 1968;
Mittelstaedt, 1957).

In the other type, information does not flow sequentially, and outputs are fed back
as inputs to the earlier subsystems. These are called feedback or closed loop systems
(Figure 1.2). Feedback connections are especially important as they completely change
the dynamics of a system. Unstable systems can be made stable using closed loop
feedback and vice versa (Åström and Murray, 2008; Dorf and Bishop, 2017). Many
reflexes are closed loop behaviors because motor actions in response to an external
sensory context also automatically alter the detected sensory inputs (Cowan et al.,
2014; Roth et al., 2014). The new set of sensory inputs depends both on the external
change and the change due to self-generated motion (Figure 1.1). This influence of
self-generated movement on sensory inputs, i.e. the feedback from the output to input,
dictates both the overall transfer function and the stability of the system.

Perhaps the most studied form of feedback is sensory feedback, where the final behav-
ioral output affects the input sensory context (Figure 1.2). For instance, flower feeding
in hawkmoths is a closed loop sensory feedback system (Farina et al., 1994, 1995).
Movements of the flower are continuously tracked using both visual and mechanosen-
sory input, and flight is controlled to compensate for the flower movements (Roth
et al., 2016). Additionally, errors made when hovering in front of the flower are sensed
and compensated for by such a system. The defining characteristic of such sensory
feedback behaviors is error-correction (Åström and Murray, 2008). Tracking of object
movements by eyes, stabilization of heads by insects, tracking of prey by cuttlefish
and mantids, etc., all have a component of sensory feedback (Hengstenberg, 1993;
Messenger, 1968; Mittelstaedt, 1962; Robinson, 1981; Viollet and Zeil, 2013).

In some systems, a copy of the neural command to the biomechanical system is fed
back to the sensory system (Figure 1.2). This feedback is called reafferent feedback,
sometimes also called corollary discharge or efference copy, and is a special case of
closed-loop feedback systems (Sperry, 1950; von Holst and Mittelstaedt, 1950). An
interesting aspect of reafferent feedback is its ability to subtract changes in inputs
due to self-generated movements (Varjú, 1990; von Holst and Mittelstaedt, 1950). For
instance, when visually tracking an object, eye movements will themselves cause the
visual world to move in the opposite direction. In the presence of reafferent feedback,
the optic flow due to self-motion can be subtracted out, giving rise to a stable repre-
sentation of the visual world (MacKay, 1973). Reafferent feedback can be found in a
variety of systems, ranging from vision to electroception (Bell, 1981; Heisenberg and
Wolf, 1988; Kim et al., 2015; MacKay, 1973; Sperry, 1950; von Holst and Mittelstaedt,
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1950).

Complex behaviors, like chasing behavior in houseflies, flower feeding in hawkmoths
etc. (Land and Collett, 1974; Roth et al., 2016), use multiple modalities and produce
coordinated movements of multiple body (Figure 1.1). For example, prey capture in
praying mantids involves a tracking phase where the head tracks the position of the
prey, using both vision and head position in a sensorimotor closed loop (Mittelstaedt,
1957). Once the prey position is determined, the strike is initiated using the front
legs, which is an open loop behavior (Mittelstaedt, 1957, 1962). Complex behaviors,
therefore, activate multiple sensory and motor systems. They do so by using different
behavioral modules in open or closed loop configurations, harnessing both sensory and
reafferent feedback (Figure 1.1, Figure 1.2). This increases the speed, stability and the
robustness of such behaviors.

1.4 Unpacking the neuromechanical black box
Teasing out the computation performed by the neural system requires knowledge of the
individual contributions of the other two systems as well as the structure of feedback
between them. This is because the neural system sits between the sensory system and
the biomechanical system; control by neural circuits strongly depends on the fidelity of
the sensory system, the controllability of biomechanical system and flow of information
between the three systems (Figure 1.1, Figure 1.2).

The contribution of sensory and biomechanical systems can be identified using open-
loop measurements (reviewed extensively in Roth et al. (2014)). In these experiments,
the feedback is artificially cut and the response of the sensory and biomechanical sys-
tems are separately measured. The amplification and filtering properties of sensory
systems can be measured using open-loop electrophysiological experiments by record-
ing from the sensory neurons directly, while presenting the insect with sensory stimuli.
This approach has had a lot of success, especially with mechanosensation (Sane and
McHenry, 2009) and olfaction (Kaissling, 1971).

Similarly, the biomechanical system, which describes both the musculoskeletal system
and its effect of the environment, can be studied in an open loop manner. Because
biomechanical systems are sometimes independently stable for small perturbations,
their properties affect the type of control and computation the neural system needs
to perform (reviewed in Chiel and Beer, 1997; Dickinson et al., 2000; Tytell et al.,
2011). Experimentally altering neural control signals and measuring their effects on
the biomechanical system would characterize the contribution of the biomechanical
system (Sponberg et al., 2011a,b). The effective biomechanics depends not just on the
musculoskeletal system, but also the timing of muscle activation during a behavior.
Based on the activation timing, muscles can act as motors, breaks, struts or springs
(reviewed extensively in Dickinson et al. (2000)). Analyzing the work done by the
muscles during a behavior, using methods like the work loop technique, can lead to
descriptions of the biomechanical filters that act on neural control signals to produce
movements (Dickinson et al., 2000; Josephson, 1999).
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Determining the flow of information between components requires a combination of
behavior and neuroanatomy experiments. Stability of behaviors and its ability to
correct errors is typically illustrative of the presence of sensory feedback (Cowan et al.,
2014). Severing this feedback by restricting or ablating the sensor would typically give
rise to catastrophic failures. For instance, fishes normally maintain a dorsal-side-up
equilibrium position, even in dark, a behavior that is lost when the labyrinth system is
destroyed (von Holst and Martin, 1973). This suggests that normal postural orientation
requires sensory feedback from the labyrinth system. Similar experiments have been
done with flies and moths to show that the halteres and antennae, respectively, are
necessary for controlled flight (Fraenkel and Pringle, 1938; Sane et al., 2007).

The results of the ablation experiments only inform the presence of sensory feedback.
Identifying the nature of feedback and its role in behavior requires clever behavior
experiments as well as neuroanatomical and electrophysiological studies. For instance,
haltere ablation causes unstable flights in flies (Fraenkel and Pringle, 1938; Pringle,
1948). Inferring that they provide proprioceptive feedback on angular velocities during
flight required behavior experiments which characterized the effect of this feedback on
flight (Dickinson, 1999; Mureli and Fox, 2015; Nalbach, 1993; Pringle, 1948). These
were supplemented by neuroanatomical and electrophysiological studies which investi-
gated the arrangement of the campaniform sensillae on the haltere and their activity
during flight (Agrawal et al., 2017; Chan and Dickinson, 1996; Fayyazuddin and Dick-
inson, 1996; Pringle, 1948; Smith, 1969). Theoretical studies built on this to help
understand the torques experienced by the halteres during flight (Chang and Wang,
2014; Nalbach, 1993, 1994; Pringle, 1948).

Note that ablation experiments work only for cases with one (critical) sensory feedback.
Multiple sets of feedback might exist that keep the behavior robustly stable. Expanding
on the previous example, postural orientation in fishes with their labyrinth destroyed is
relatively normal in fishes with an overhead light source, suggesting that this behavior
utilizes both visual and labyrinth systems (von Holst and Martin, 1973). In cases like
these, multiple experiments under different conditions need to be performed to tease
out the sensory feedbacks involved.

Reafferent feedback connections, unlike sensory feedback, are ingrained within the
nervous system (Figure 1.2). Because such connections send a copy of the motor
command to the sensory system, detecting their presence requires analyzing how the
same input is sensed by the sensory system in the presence or absence of voluntary
movement. The classic example of reafference is the subtraction of self-motion by
the human eye – when the extra-ocular muscles are paralyzed and the eye voluntarily
tries to move in one direction, it gives rise to a movement of the visual field in the
same direction of motion (von Helmholtz, 1867; von Helmholtz and Southall, 2000).
Because the muscles were paralyzed and there was not actual movement of the eye, this
effect was due to feedback of the motor command to the sensory system, i.e. reafferent
feedback (von Holst and Mittelstaedt, 1950). Similar experiments have been performed
with fruit flies, by recording from optic-flow processing cells while presenting tethered
flies (open loop) with identical visual input during straight flight and active turns. The
output of the same cells was different in response to the same stimuli based on the state
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of flight, thereby showing the presence of reafferent feedback (Kim et al., 2015).

Establishing reafferent feedback connections requires an explicit marriage between be-
havior and electrophysiology. This is because voluntary behavior affects the sensory
system by modulating activity of the sensory neurons. Such reafferent connections
to visual, auditory and electroceptive systems have been studied in several animals
(Bell (1981); Poulet and Hedwig (2002); Roy and Cullen (2004); reviewed in Crapse
and Sommer (2008)). Determining the information sent to effectively cancel out self-
motion has been harder to establish and has been shown only in a few cases (Kim
et al., 2015; Poulet and Hedwig, 2006).

Once the components and the feedbacks in the neuromechanical black box are known,
the computation of the neural system can be determined from the overall neurome-
chanical transfer function and the transfer functions associated with the sensory and
the motor systems (Figure 1.2). The obtained transfer function of the neural system
describes the computation performed by the neural circuits. With this computation
in mind (Krakauer et al., 2017; Marr and Poggio, 1976), the neural implementation
can be then investigated using both experimental methods such as electrophysiology
and optogenetics, as well as computational methods such as spiking neural network
simulations (Clark et al., 2013; Pearson et al., 2006).

1.5 Advantages and challenges
The proposed framework uses a top-down approach to investigate behaviors, with the
overall behavior described as a transfer function. This implies that any description
of the subsystems, and the feedback connections between them, must add up to the
overall transfer function (Figure 1.2). This also means that knowing the behavior
and the sensory and motor subsystems would allow one to determine the computation
performed by the neural subsystem (Figure 1.2). Such a guess would aid in the con-
ception of precise electrophysiological and neuroanatomical experiments to understand
the neural control exerted on a particular behavior, as well as in the specific imple-
mentation of these control algorithms (Krakauer et al., 2017; Marr and Poggio, 1976;
Reichardt et al., 1979).

A corollary of using this framework is modularity of individual subsystems. Both sen-
sory systems and motor systems are shared over a variety of behaviors. For instance,
insects use optic flow to position various parts of their body including the head, ab-
domen and antennae (Hengstenberg, 1993; Khurana and Sane, 2016; Taylor et al.,
2013). The same optic flow is also used to stabilize flight, avoid obstacles and deter-
mine flight paths over longer timescales, as well as to initiate and control landing in
insects (Balebail et al., 2019; van Breugel and Dickinson, 2012; Collett and Land, 1975;
Reichardt and Wenking, 1969; Srinivasan and Zhang, 2004; Wagner, 1982). All these
behaviors, which are typically studied in isolation, have the same sensory subsystem.
Ideally, knowing the ‘complete’ visual subsystem would allow it to be utilized to un-
pack the black box of each of these behaviors. If a repository of sensory and motor
system descriptions exists, one can determine the computation performed by the neural
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system by knowing the overall behavior of interest as a transfer function and filling in
the descriptions of the relevant sensory and motor systems (Figure 1.2).

Non-linearity in the subsystems will pose an interesting challenge to the proposed
framework. The non-linearity of subsystems giving rise to linear behaviors highlights
a fascinating problem - how are multiple non-linear processes in a system giving rise to
overall linear behavioral responses to stimuli? For example, the visual system in fruit
flies is known to employ non-linear processes to extract directional information from
optic flow, which is also influenced by the behavioral state of the animal (Chiappe et al.,
2010; Gruntman et al., 2018; Strother et al., 2018). However, linear neuromechanical
models can explain the effect of changes in luminance on visual processing (Sponberg
et al., 2015). This suggests that the neural system actively controls for the non-
linearities and keeps the overall system working in the linear regime. The proposed
framework would enable identification and investigation of such behaviors.

Finally, identification of the transfer functions of individual subsystems would allow
for more focused experiments that aid in understanding its workings (Reichardt et al.,
1979). It also enables integration of multiple experimental and computational tools to
generate possible hypotheses of mechanisms behind these transfer functions (Cowan
et al., 2006; Mongeau et al., 2013, 2015). Combinations of such tools to generate and
falsify hypotheses allows for iterative investigations of the neuromechanical black box.
For instance, knowledge of the neural computation underlying a behavior allows the
use of biological neural network models to propose testable hypotheses of neural mech-
anisms (Marr and Poggio, 1976; Reichardt et al., 1979). Predictions of these models
could be tested using electrophysiology and optogenetics. If these hypotheses are fal-
sified, the generated data could be used to narrow down the space of all hypotheses,
generating a new set of plausible ones. Such a process eventually leads to a hypothesis
that stands the test of experiments. The recent emergence of such computational tools
would greatly aid this endeavor (Bower and Beeman, 1998; Carnevale and Hines, 2006;
Goodman and Brette, 2009; Linssen et al., 2018; Ray and Bhalla, 2008; Stimberg et al.,
2014).

1.6 Antennal positioning in insects
We use antennal positioning in hawkmoths to investigate the proposed framework
for several reasons. First, the behavior is critical for flight. Positioning of antennae
enables insects to sense mechanosensory cues required for flight control; when deprived
of antennal mechanosensory input, most insects are unable to control their flight (Sane
et al., 2007). Second, antennal positioning behavior is guided by sensory inputs from
multiple modalities, including odor, optic flow and airflow (Gewecke, 1974; Heran, 1959;
Honegger, 1981; Khurana and Sane, 2016; Krishnan and Sane, 2014; Lambin et al.,
2005; Mamiya and Dickinson, 2015; Okada and Toh, 2006; Yamawaki and Ishibashi,
2014). Third, the individual components required for proper antennal positioning
are well known (Böhm, 1911; Krause et al., 2013; Krishnan et al., 2012; Okada and
Toh, 2000; Sant and Sane, 2016, 2018). Finally, the neural basis of this multi-sensory
behavior is not well studied.
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1.6. Antennal positioning in insects

The above combination of known components with unknown neural computation makes
antennal positioning behavior a natural candidate for this framework. The computa-
tion of the underlying neural circuits can be identified by describing the overall neu-
romechanical black box, its components and the connectivity between them. Electro-
physiological and computational tools can then be used to further characterize the sub-
systems in the antennal positioning behavior. In the upcoming chapters, I describe my
investigations of antennal positioning behavior using the Oleander hawkmoth, Daphnis
nerii as my model organism.

During flight, antennal position is controlled by rapid mechanosensory feedback from
Böhm’s bristles and modulated by slower feedback based on frontal airflow via the
Johnston’s organ (JO). What control algorithm underlies the integration of these dis-
parate mechanosensory inputs? In chapter 2, we use a combination of experiments and
control theoretic tools to investigate airflow-dependent antennal positioning. Based
on behavioral experiments, we first describe the behavior as well as the structure of
the underlying neuromechanical black box (section 1.2; section 1.3). The black box
consists of two sub-circuits, one that maintains the antenna at a preferred position or
set-point whereas the other modulates this set-point based on sensory context. Next,
we use control theoretic tools to compare the predictions of the neuromechanical black
box with experimental data and examine if a linear transfer function suffices for various
preferred positions. Finally, based on known contributions of the sensory and motor
system, we tease out the contributions of the neural network (section 1.4). Based
on this, we propose a minimalistic model neural network that integrates fast feedback
from Böhm’s bristles to generate reflexive responses to perturbations, with slower feed-
back from JO modulating position. Thus, moths maintain antennal position over short
timescales while retaining flexibility over longer durations.

Knowing the structure of the neuromechanical black box underlying antennal position
allowed us to individually investigate each of its subsystems (section 1.4). In chapter 3,
we focus on the neural mechanisms of airflow-dependent set-point modulation. Using
behavioral experiments, we map out the flow of information from JOs to the antennal
motor system, i.e. the structure of this subsystem (section 1.3). We find that sensory
inputs from both JOs are required for reliable modulation of each antennal set-point,
suggesting a bilateral, possibly non-linear, integration of JOs input. Next, we per-
form open-loop EMG experiments to characterize how activity of antennal muscles are
modulated based on sensory inputs from the JOs. Using a finely calibrated stimulus
setup, we deliver precise flagellar vibrations to excite the mechanosensory neurons of
the Johnston’s organ while simultaneously recording from the extrinsic muscles.

In chapter 4, we use computational tools to describe activation patterns of Böhm’s
bristles to different movements of the antenna (mechanosensory system; section 1.4).
Because the activation of mechanosensory hairs depends on both the position of the hair
plate on the antenna as well as the movement of the antennal joint, the sensitivity of
the hair plate is different for different positions. I develop a toolbox to quantify input-
output (antennal position-hair field stimulation) transformation of the hair plates.
Additionally, this toolbox provides an easy way to simulate the proprioceptive feedback
sent to the nervous system during active positioning of the antenna.
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In addition to the above efforts, I also worked on quantifying the kinematics of pitch-up
maneuvers in freely flying houseflies. This was an interlude to understanding which
movements of the wing produce pitch-up torques. In effect, this study investigated part
of the flight biomechanical system. However, because it was correlational in nature,
and because it was a new behavior on a new model system, I have placed the results
of this study in the Appendix D.

On the whole, this thesis uses the proposed framework to investigate antennal posi-
tioning in hawkmoths. It uses control theory to describe the neuromechanical black
box, behavior and EMG experiments as well as computational models to delve into
the underlying computations/transformations of each the constituent systems. Each
chapter ends with a discussion on the insights obtained from these experiments/simu-
lations, its applicability to other insect reflexes and the generality of the mechanisms
discerned.
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Chapter 2

Airflow-dependent modulation of
antennal positioning reflex

2.1 Introduction
Animal locomotion depends on the acquisition and reliable encoding of sensory infor-
mation from their surroundings. This task is particularly challenging for control of fast
movements, such as those that drive flight in insects. On stroke-to-stroke timescales,
insect flight relies heavily on rapid mechanosensory feedback from antennae and vi-
sual feedback from their compound eyes (Sane et al., 2007; Warrant and Dacke, 2011).
They actively move and position their antennae and heads via fine feedback control of
antennal muscles and head movements, thereby optimizing acquisition of sensory infor-
mation required for robust flight control (Hengstenberg, 1993; Staudacher et al., 2005).
In addition to the dynamics of movements of sensory organs, the activity of sensory
neurons is also inherently dependent on the internal state of the animal. For instance,
the activity of visual interneurons has been shown to be different in active vs. quiescent
insects (Chiappe et al., 2010; Maimon et al., 2010). Such state-dependent modulation
vastly enhances the functionality of the antennae and eyes by greatly widening the
range of their sensory acquisition.

From a controls perspective, how state-modulated sensory-feedback influences move-
ments of sensory organs for optimal acquisition of information poses a fascinating
neurobiological question. Specifically, the insect antenna provides an excellent study
system to address this question for several reasons. First, antennae are multi-modal
sensory probes; they are used to acquire both olfactory and mechanosensory informa-
tion (Schneider, 1964). Thus, their movements may strongly depend on the cues the
insects are trying to maximize. Second, the movements of antennae are guided by
multi-sensory inputs (Erber et al., 1993; Khurana and Sane, 2016). Antennal move-
ments therefore provide a convenient readout for understanding how the nervous sys-
tem combines sensory feedback from diverse modalities. Third, such movements are
context-specific and depend on whether the insect is walking, flying, foraging, escaping,
etc. (Staudacher et al., 2005). State-dependent neuromodulation therefore plays an
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important role in the control of antennal movements.

State-based and context-specific modulations of antennal position likely optimize sen-
sory input acquisition on long timescales. On shorter, stroke-to-stroke timescales the
antennae should be held in a stable position to reliably obtain information. For in-
stance, drifts in position on these timescales would alter antennal mechanosensory
feedback from the Johnston’s organ (JO), which is required for controlled flight (Sane
et al., 2007). The smooth mobility of the antennae must therefore be balanced against
the need for maintaining them in a stable, unambiguous position. Here, we investigate
this trade-off using the Oleander hawkmoth, Daphnis nerii, as our model system.

Stable positioning of the antennae requires mechanosensory feedback from antennal
hair plates (also called Böhm’s bristles in moths). These are located at the base of the
antennae and they encode the instantaneous position of the antenna with respect to the
head (Böhm, 1911; Krause et al., 2013; Krishnan et al., 2012; Okada and Toh, 2000).
Across a variety of insects, including hawkmoths, the axons of these mechanosensors
spatially overlap with the dendritic arbors of antennal motor neurons in the Antennal
Mechanosensory and Motor Centre (AMMC) (Schneider and Kaissling, 1956; Krishnan
et al., 2012; Sant and Sane, 2018, 2019). Information about instantaneous antennal
position is therefore rapidly fed back into the antennal muscles, likely stabilizing posi-
tion. Indeed, ablating these mechanosensors destroys stable positioning of the antenna
in various insects (Krause et al., 2013; Krishnan et al., 2012; Okada and Toh, 2000).

Modulation of antennal position is guided by multiple sensory cues. Flying insects re-
spond to increasing airflow by bringing their antennae progressively and symmetrically
forward (Gewecke, 1974; Heran, 1959; Khurana and Sane, 2016). Optic flow, on the
other hand, induces antennae to move in the opposite direction (Khurana and Sane,
2016; Krishnan and Sane, 2014; Mamiya et al., 2011). Walking insects also respond
to visual motion by tracking moving objects with their antennae, but this behavior
is not bilaterally symmetric (Honegger, 1981; Okada and Toh, 2006; Yamawaki and
Ishibashi, 2014). In addition to these inputs, odor, too, has been shown to modulate
antennal position (Erber et al., 1993; Lambin et al., 2005). Although the effect of these
cues on antennal position has been quantified, the mechanistic basis underlying this
modulation remains largely unknown.

The above studies suggest that the antennal motor system combines information from
several sources with disparate latencies ranging from fast mechanosensory feedback
from the Böhm’s bristles (< 10ms) to slower visual input from the eyes (approx.
35ms to 60ms) (Krishnan et al., 2012; Krishnan and Sane, 2014). How does the
antennal motor system integrate proprioceptive feedback at rapid (stroke-to-stroke)
timescales with relatively slower multi-sensory input to produce stable antennal po-
sitioning? Here, we address this question by investigating the neural principles un-
derlying airflow-dependent antennal positioning in the oleander hawkmoth, Daphnis
nerii. Because both stable positioning of antennae and airflow-dependent changes oc-
cur while preparing for or during flight, our experiments were performed on tethered
flying hawkmoths. We use the framework described in chapter 1 to perform experi-
ments, describe the behavior, derive the structure of the neuromechanical black box
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and infer the computation performed by the underlying circuits. Finally, based on this,
we construct a minimalistic neural circuit that can position the antennae in a robust,
yet flexible manner.

2.2 Methods

2.2.1 Moth breeding and treatment procedures
The experiments described in this paper were performed on 1-2 day old adult oleander
hawkmoths, Daphnis nerii. The moths used were either laboratory-bred or obtained
from wild pupae. Moth eggs were obtained by placing 2 male and 2 female moths in
a large meshed chamber (approximately 8m3) along with their host plants, Nerium
oleander, and Tabernaemontana divaricata. Additional flowering plants placed in the
meshed chamber provided nectar for the adult moths. Moth larvae were placed in
mesh-topped boxes and reared on a natural diet of Nerium oleander leaves. Post-
pupation, they were placed in sawdust till the moths emerged. The emerged adults
were placed in cloth cages and exposed to natural day-night cycles until they were used
for experiments.

Airflow stimulus

A wind tunnel was used to provide moths with different airflow cues. The working
section of the wind tunnel had a cross-section of 0.28m× 0.28m and a length of 1.2m
(Figure 2.1A). The floor and the walls of the working section were covered with white
paper to minimize visual cues. Moths were tethered such that their heads lay approx-
imately at the center of the wind tunnel. The airflow speed in the wind tunnel was
monitored using a constant temperature mini-anemometer (Kurz 490S, Kurz Instru-
ments Inc., Monterey, CA, USA).

Dorsal magnetic tether

Moths were first cold anesthetized by placing them in −20 °C for 7min to 9min. The
anesthetized moths were placed on an aluminum block maintained at 0 °C, the dorsal
thorax descaled and a neodymium magnet (3mm diameter, 1.5mm) attached to the
area (Figure A.1A). The total duration of the tethering process, including the cold
anesthesia, did not exceed 20min. For the antennal perturbation experiments (de-
scribed below), a small piece of a minutien pin (Austerlitz insect pins) was glued to
the tip of the left antenna using UV-cure glue (Loctite-352). Moths were allowed to
recover from the process for at least an hour. After recovery, moths were tethered using
the dorsally glued magnet and placed in a wind tunnel. This method of tethering is
similar to that used in Hinterwirth and Daniel (2010).

Restricting Johnston’s organs

Moths were cold anesthetized and placed on an aluminum block maintained at 0 °C
throughout the procedure. The area around the base of the antenna was carefully
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Fig. 2.1 : Experimental apparatus
(A) Experiments were performed in a 1.2 m × 0.28 m × 0.28 m wind tunnel. The moth was
tethered to the wind tunnel through a neodymium magnet glued to the thorax. Two high
speed cameras filming at 100 fps captured the antennal responses during tethered flight. (B)
Electromagnets were used to perturb the antennae in order to quantify stability at different
airflows. Iron filings were glued to the left antenna and perturbed during tethered flight
using the left electromagnet (the right electromagnet was retained for visual symmetry but
otherwise not used). The response was filmed at 1000 fps for four different airflows. (C)
IAA was computed as angle between antennae (grey). Head vector (dashed red line) was
defined using head point and midpoint of antennal bases. Left and right antennal angle
(blue, green) was computed as angle between respective antenna and head vector.
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descaled using a fine brush. This ensured that the Böhm’s bristles present at the base
of the antenna remained intact (Figure A.1B,C,E). Next, the pedicel-flagellum joint was
carefully descaled under the microscope. A small drop of cyanoacrylate glue was placed
on the pedicel-flagellum joint and spread around the joint using an insect minutien pin
(Austerlitz insect pins) (Figure 2.2, Figure A.1F). For sham-treated moths, the glue
was placed on the third/fourth annulus of the antenna instead of the pedicel-flagellum
joint (Figure 2.2, Figure A.1D). After both the antennae were treated, a neodymium
magnet was glued to the thorax of the moth (described above). The entire duration of
this procedure for both the sham and the JO-restricted moths was around 20min to
40min.

Johnston’s Organ (JO) restricted

Flagellum

Pedicel

Scape

Johnston’s organ 

mechanosensory 

neurons

Hair plates

(Böhm’s 

bristles)

Mechanosensory 

neurons

Sham-treatment

Fig. 2.2 : Treatment groups
JO-restricted: mechanosensory feedback from JO was restricted in a subset of moths by
gluing the pedicel-flagellar joint (red). Sham-treated: To control for the effect of glue, annuli
on the flagellum some distance from the pedicel-flagellar joint were restricted in another
subset of moths (green). Note that active joints of the antenna were not glued, allowing full
antennal mobility.

2.2.2 Behavior experiments
The below described behavior experiments were performed alongside with Nitesh Sax-
ena, a graduate student from Sanjay P. Sane’s lab. We together performed the experi-
ments and digitized the data. I performed the subsequent data analysis and developed
the computational models.

Antennal response to airflow

Tethered moths (control, sham and JO-restricted) were presented with frontal airflow
ranging from 0m s−1 to 5m s−1 in increments of 0.5m s−1. The antennal response to
airflow was filmed at 100 fps using two Phantom v7.3 high-speed cameras (Vision Re-
search, Wayne, NJ, USA; Figure 2.1A). To ease digitization, a black spot was marked
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at ~5mm from the tip of each antenna for all the treatments (control, sham and JO-
restricted). We recorded at 100 frames for each windspeed, which corresponds to about
35 wingbeats of antennal position data per windspeed. Most moths initiated flight im-
mediately after tethering. In the few cases when flight was not automatically initiated,
flight was elicited either by giving it a brief airflow of 0.5-1 m s−1 or by a tactile stim-
ulus to the abdomen. Once a flight bout was initiated, the moth was given increasing
airflow from 0m s−1 to 5m s−1 and the antennal response was continuously recorded.
In general, the antennal response was obtained in one continuous flight bout of the
moth. After every experiment, the filming area was calibrated using a custom-made
3D calibration object. The recorded videos were sub-divided into antennal responses
for individual airflow speeds, then calibrated, digitized and analyzed.

Antennal perturbation at different airflows

In this experiment, tethered moths were given 4 values of airspeed – 0m s−1 1.5m s−1

2.5m s−1 and 4m s−1. The values were chosen such that they represented the entire
curve obtained from the above experiment (Figure 2.3A). Two custom electromagnets
were used to perturb the antennae of either control or JO-restricted moths, at the
above four airflow speeds (Figure 2.1B). The electromagnets were positioned above
and behind the tethered moth such that, when switched on, they pulled the antenna
backward and slightly upward. Only the left electromagnet was used for perturbation,
whereas the right was placed symmetrically to avoid differential visual inputs to the
moth. The antennal responses to perturbations at different airflows were recorded at
1000 fps using two Phantom v7.3 high-speed cameras (Vision Research, Wayne, NJ,
USA). An Arduino mega 2560 was used to switch on and off the electromagnet five times
per trial, at a frequency of 1Hz. The perturbation protocols were flanked by quiet zones
to record the resting position of the antennae. The total duration of perturbation for
each airflow was ~7.122 s. To ensure consistent ratios of quiet zones and perturbations,
the camera was triggered by the Arduino before beginning a protocol. The data was
usually obtained from one flight bout for each protocol.

2.2.3 Data analysis
Almost all the data analysis and statistics used in this paper were done in MATLAB
(The MathWorks, Natick, MA, USA). Regression fits, on the other hand, were all
performed in R (Team, 2017).

Antennal response to airflow

Using two different calibrated camera views, we reconstructed the three-dimensional
(3D) Cartesian coordinates of the tip and base of both antennae. Digitization of the
antennae and reconstruction of the digitized points were done in MATLAB using a
custom written code (DLTdv5; Hedrick (2008)). Antennal vectors were calculated using
the Cartesian coordinates of the tip and base of each antenna. The angle between the
antennae, also called inter-antennal angle (IAA), was computed as the angle between
the two antenna vectors (Figure 2.1C). All 100 frames of antennal position for all
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airflows were first digitized for a subset of the data (2 out of 8 control moths, 2 out of
5 sham moths and 5 out of 9 JO-glued moths). The mean and the standard deviation
of IAA for each of these moths were then compared to 10 randomly picked frames from
the same dataset. The mean and standard deviation of just 10 digitized frames were
comparable to those from all digitized frames. Therefore, for the rest of the dataset,
only 10 frames were digitized out of the 100 recorded frames.

After digitization, the IAA data was imported into R. Spearman’s coefficient was com-
puted for response to airflow in control, sham and JO-restricted moths. The coefficients
for all moths were then pooled together based on treatment and tested for normality
using Lilliefors test. Because the coefficients for all three treatments were not nor-
mally distributed (p < 0.05), Kruskal Wallis and Nemenyi tests were used to detect
statistically significant differences between the three treatments.

The sensitivity of antennal movements to airflow was computed as change in IAA per
0.5m s−1 step change in airflow (Figure A.2D-F). The torque on the antennal base due
to aerodynamic drag was non-linear and dependent on the antennal angle and speed
of frontal airflow (Gewecke and Heinzel, 1980). It was computed using the following
equation (derived from Gewecke and Heinzel (1980)):

Tγ = sin γ.v1.44a , [2.1]
where,

γ = antennal angle,
va = speed of airflow

Tγ was calculated for all three treatments (using data in Figure 2.3A-C, Figure A.2A-
C). If feedback from JO regulates torques by changing antennal position, Tγ should
remain constant for increasing airflows. Airflow-dependent changes in antennal position
mitigated Tγ (Figure A.2G-I; compare control, sham with JO-restricted), but did not
maintain it at a constant value.

Antennal perturbation at different airflows

Antennal responses to perturbations were recorded at 1000 fps by two high-speed
cameras for ~7 s per airflow, for four different airflows. Because of this high frame
rate, the number of frames to be digitized per moth was 28000 per camera view. The
partially manual method of digitizing used for the above experiment was not feasible
here. Therefore, an automated method of digitization was developed and used for
this experiment. A custom code, henceforth called Autotracker, was written using
the computer vision toolbox in MATLAB to automatically track the moth antennae
and the tip of the moths’ heads. Autotracker requires only the first frame (and a
few problematic frames) to be manually annotated. It uses the annotated frames
as templates and tracks the antennae by using a combination of template matching
score maximization, error residual minimization and point drift minimization. At
every frame, manually annotated templates were compared with sub-images extracted
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from the image. A template-matching score was computed as the distance between
individual pixels in the sub-images and the templates. To minimize point drift to
similar structures in the vicinity (from tips of antennae to tips of legs, for instance), we
assumed a maximum velocity of the antennal movements. This method also restricted
the search space of the template-matching algorithm, thereby increasing its speed.

It outputs the 3D Cartesian coordinates of the tip and base of both antennae, and the
tip of the moth’s head. The output was checked for mistracked frames, which were then
manually corrected. The mistracked frame correction was performed using a modified
version of DLTdv5 (Hedrick, 2008) which uses the same template matching algorithm
as Autotracker.

By matching templates, we obtained a distribution of similarity, ideally centered around
the point which was being tracked, for both camera views. Because the actual tracked
point was an object in 3D, the tracked points in both camera views should correspond to
the same point in 3D. This occasionally failed if we used the highest matched template
for both views because of small variations in lighting which moved the position of
the highest matched template in one view, but not the other. To circumvent this
problem, we used the top 50 matched templates from both views to calculate the error
residual, i.e. the 3D reconstruction error (Hedrick, 2008). We found a 3D point which
minimized the 3D reconstruction error while simultaneously maximizing the similarity
of templates in both views. The 3D reconstruction code was adapted from Hedrick
(2008), and DLTdv5 was used to validate all computations. Using this approach, we
were able to robustly track the points of interest in our videos and reconstruct them
in 3D.

Using the Autotracker, we first completely digitized a subset of dataset (2 out of
11 control moths and 2 out of 6 JO-restricted moths; Figure A.7A,B). For the rest,
we completely digitized only the regions where the electromagnets were switched off
and the antennae were free to respond, as digitization of the whole dataset was not
necessary (Figure A.7C,D). For instance, when the electromagnet was on, the antenna
and head positions remained relatively constant. Hence, using only a few frames before
the antenna release was sufficient for obtaining the perturbed location of the antenna.
Additionally, the distributions of the digitized points obtained from this dataset were
comparable to the distributions from the complete dataset.

After correcting for tracking errors, the Cartesian coordinates of the digitized points
were used to compute the antenna vectors and the head vectors. Antennal vectors, as
done above, were computed from the Cartesian coordinates of the antennal tip and the
base points. The head vector, on the other hand, was computed as the unit vector along
the line connecting the midpoint of the antennal bases to the head point. Individual
antennal angle was defined as the angle between an antenna vector and the head vector
(Figure 2.1C). Because the head is free to rotate in our experiments, a head-centric
definition allowed us to compute the antennal angle independent of head rotation (Fig-
ure A.5A-D). During electromagnetic perturbations, we observed small changes in head
orientation throughout our experiments (Figure A.5E-G). Despite this, the average po-
sition of the right (control) antennal angle typically remained constant throughout the
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trial, suggesting that the head-centric method used to compute antennal angles elim-
inated rotations of the head (Figure A.5A-D, Figure A.5). Additionally, both active
head rotations and the ones elicited by electromagnetic perturbation seem to be too
small to affect airflow-dependent antennal positioning (Figure A.5A-D).

Antennal set-point was defined as the angle the antenna was corrected to after each
perturbation (steady-state angle after perturbation). Set-points were statistically com-
pared using the same methodology as for IAA in the above experiment. After importing
the corrected angle data set into R, Spearman’s correlation coefficient was computed
for set-point vs. airflow for every moth (control/JO). The coefficients for all moths were
then pooled together based on treatment and tested for normality using Lilliefors test.
Because the coefficients were not normally distributed (p < 0.05), Wilcoxon rank sum
test was used to detect statistically significant differences between the two treatments.

Next, the antennal return trajectory was extracted from the left (perturbed) antennal
angle. The return trajectory, however, was influenced by the wingbeat (Figure A.6A),
likely due to transmission of wing motion via the head to the antennae and due to
induced airflow produced by the beating wings (Sane et al., 2007; Sane and Jacobson,
2006). Such wingbeat-induced noise is typically removed using a simple notch filter
about the undesired frequency. However, this approach would have filtered nearby
frequencies and/or added ringing effects, thereby modifying the characteristics of the
return trajectory. We circumvented this problem by subtracting the wingbeat fre-
quency from the return trajectory. To do this, we first obtained the Fourier transform
of the first derivative of the antennal trajectory, where the wingbeat frequency was
most prominent. Generally, we found two dominant frequencies in the wingbeat fre-
quency range (35Hz to 40Hz). These two frequencies might arise due to slight drifts in
wingbeat frequencies due to the long recording duration (the separation between these
frequencies were generally around 1Hz). These two dominant wingbeat frequencies,
along with their first harmonics, were selected and used to fit sine waves (amplitude
and phase were the two free parameters for the fitting algorithm). These were then
subtracted from the first derivative of the antennal return trajectory, and the resultant
was integrated to obtain the wingbeat frequency-free return trajectory. To validate
this approach, we compared the effect of notch filtering vs. sine subtraction on raw
data (Figure A.6A). We used a fourth-order notch filter with a bandwidth of 5Hz
around the wingbeat frequency, which was determined as the highest power sinusoid
with frequency from 35Hz to 45Hz (wingbeat frequency of moths). The sine sub-
traction method produced very similar trajectories to the notch filtered one even for
antennal trajectories with greater wingbeat-induced noise, which illustrates its effec-
tiveness (Figure A.6A). Sine subtraction ensured that only a particular frequency of
a specific phase and amplitude was removed, ensuring that the characteristics of the
return trajectory remain more or less unaltered.

After subtracting the wingbeat frequency from antennal kinematics, we calculated
antennal set-points from the return trajectories and used these as inputs to tune the
control theoretic models. After the electromagnetic perturbation was turned off, the
antenna initiated the return to its set-point. The switching off of the electromagnetic
field itself, as measured using a Hall effect sensor (DRV5053), was not a precise step
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function and took about ~75ms to reach zero (Figure A.6C,D). Hence, the point at
which the electromagnet stopped did not provide an accurate indication of the end of
perturbation. The onset of antennal return movement was inherently variable from
trial to trial because it was dependent on many factors including the distance of the
electromagnet, the differences in antennal inertia, etc. (Figure A.6A,B). Instead, we
determined the angular difference between the angle at which the antenna was held by
the electromagnet to the angle at which it finally settled (set-point), and arbitrarily
defined 25% of this difference as the start of the return trajectory (Figure A.6A). The
set-point, the start point and the return trajectories were stored for further analysis
(control theoretic model described below).

2.2.4 Computational Models
Control theory model of antennal response to perturbation

To analyze the return characteristics of the antennae, we modeled the antennal cir-
cuit as a closed loop feedback system with set-point as the input and the measured
antennal position as the output (Figure 2.7). The transfer function of the complete
system depends on the transfer function of the antennal circuit L(s). We systematically
increased the number of poles (np) and zeros (nz) in L(s) from zero to two (similar
approach to Madhav et al. (2013)), as shown below:

1. [np = 0, nz = 0] Proportional (P) system

2. [np = 1, nz = 0] Integral (I) system

3. [np = 1, nz = 1] Proportional Integral (PI) system

4. [np = 1, nz = 1] Proportional Differential (PD) system

5. [np = 2, nz = 0] Double integral (II) system

6. [np = 2, nz = 2] Proportional Differential Integral (PID) system

We then described the transfer function for each of these models (Figure 2.7) and
converted them into state space models with the constants as free parameters, set-
point as the input and the antennal return trajectory after release as the output. We
found the best parameter fits for each model for the given input and output using
the System Identification Toolbox in MATLAB. The coefficient of determination (R2)
and normalized akaike information criterion (nAIC) were computed for each of these
models to estimate the goodness-of-fit. R2 quantifies the amount of variation in the
raw data explained by the model. The nAIC, on the other hand, quantifies how much
information is lost if one uses the model instead of the raw data. Both estimates, when
combined, provide a measure of the goodness-of-fit for each model. Additionally, both
these coefficients were statistically compared across models using Kruskal-Wallis and
Nemenyi tests (not normally distributed, Lilliefors test, p < 0.001).

To test the predictive capabilities of all the models, we computed the model constants
based on the measurements from one single airflow and used it to predict the return
trajectories of the antennae for another airflow. We performed this analysis repeatedly
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for all airflows and computed the R2 and the nAIC values for all the fits. These coef-
ficients were also not normally distributed (Lilliefors test, p < 0.001). We, therefore,
compared them statistically using Kruskal-Wallis and Nemenyi tests.

Spiking neural network circuit of the antennal circuit

The parameters of the components of the minimal neural circuit were set based on the
integral (I) system model. Overall, we kept the spiking neural circuit model extremely
simple, with the number of assumptions at a bare minimum, and used it as a feasibility
test to check if such a neural circuit can produce behavior similar to that seen in
experiments.

The minimal spiking neural circuit model incorporated the equivalent components of
a simple linear integral model and had four components:

1. Mechanosensory neurons of the Böhm’s bristles were assumed to be simple on-off
neurons which encoded antennal position at the population level. Firing rates of
individual neurons were dependent on activation (On: 50Hz Poisson firing, Off:
10Hz). Recruitment of the sensory neurons were proportional to activation of
the hair plates (Böhm’s bristles), i.e. the antennal angle.

2. Interneurons modulated the set-point of individual motor neurons based on ac-
tivity of JO, which in turn depended on airflow. To break symmetry and cause
the antenna to move forward with increasing airflow, the interneuron activated
one of the motor neurons preferentially more than the other (Figure 2.9).

3. The motor neuron was a simple integrate-and-fire neuron whose output firing rate
was proportional to synaptic input. Thus, it effectively acted as an activity sum-
mator in the control theoretic model (Figure 2.9). The negative feedback arises
from the connectivity between motor neurons and the muscles they activate; mo-
tor neurons activate muscles which, upon contraction, reduce the mechanosensory
feedback from the hair plates, in turn decreasing their own activity (Figure 2.9).

4. Muscles, due to their slow calcium dynamics, integrate the error signal (the
time constant of the integral system is in the same range as calcium integration
times (Chapman, 2012; Staudacher et al., 2005)). The combined activity of all
antennal muscles determine change in antennal position. For the simple scape–
pedicel joint, changes in position depend of on the difference in activity between
the two muscles (Figure 2.9) and reach equilibrium when the activities are equal.

The sensory neurons model mechanosensory neurons that innervate hair plates (Böhm’s
bristles). The activation of the hair plates is binary - the mechanosensory hairs are
either active (bent) or inactive (Krishnan et al., 2012). The interneuron in the model
was an excitatory neuron whose firing rate changed with airflow (set-point). The motor
neuron was approximated by an integrate-and-fire neuron which received inputs from
sensory neurons and the interneuron (generic integrate-and-fire parameters Kunkel
et al. (2017)). Every spike from the motor neuron elicited a calcium spike in the
muscle, which decayed exponentially with a time constant of 50ms (based on the
integral system from the control theoretic analysis). The contraction of the muscle,

36



Modulation of antennal position

at every time step, was determined by the level of calcium in the muscle. Two such
circuits were used to model the pedicel segment of the antenna (Figure 2.9). The time
step for the neural circuit and the associated calcium dynamics of the muscles was
0.1ms. The change in antennal position, which was determined from the contraction
of the antennal muscles, was updated every 10ms. The model was simulated using
NEST (Kunkel et al., 2017) and the antennal position was analysed in MATLAB.
To compare the performance of the neural circuit with behavioral data, we ran the
simulated data through the same control theoretic analysis. Because the sampling rate
was 1000 fps for the model, the simulated position was upsampled using a cubic spline
interpolation. The simulated position was then run through the same control theoretic
framework described above. The exact same analysis, including statistics, was also
used on the simulated data.

2.3 Results
Tethered flying moths were placed in a wind tunnel and presented with airflow stimuli
of different magnitudes to measure their effect on antennal position. Using two high-
speed cameras mounted on the wind tunnel (Figure 2.1A, see section 2.2), we recorded
the changes in inter-antennal angle (IAA) for a range of airflows (Figure 2.1C) for
a normal (Control) group which was left untreated, followed by moths in which the
antennal mechanosensory feedback was restricted, as described below.

Two sets of mechanosensory structures – the antennal hair plates (Böhm’s bristles) and
the JOs are located in the basal scape and pedicel segments of the antenna (Figure 2.2).
Both scape and pedicel are active joints, deformations in which are sensed by Böhm’s
bristles (Böhm, 1911; Krishnan et al., 2012). In contrast, the JO, composed of ca.
140 scolopidial sensory neurons, senses the passive vibrations in pedicel-flagellum joint
(Sant and Sane, 2018). Previous studies have shown that the JO senses flagellar vi-
brations over a wide range of frequencies, from low-frequency vibrations due to airflow
and gravity (Dieudonné et al., 2014; Kamikouchi et al., 2009; Mamiya and Dickinson,
2015; Yorozu et al., 2009) to high-frequency vibrations due to flight-related strains in
the antennal base (Dieudonné et al., 2014; Sane et al., 2007). Based on these obser-
vations, we hypothesized that the mechanosensory inputs from JO modulate antennal
position in response to airflow. To test this hypothesis, we restricted motion in the
pedicel-flagellar joint of the antenna, and monitored its response to variable frontal
airflow. This attenuated the passive vibrations of the flagellum that activate the JO
(Figure 2.2, see section 2.2), thereby disrupting its mechanosensory feedback. Specifi-
cally, the moths were divided into three groups. In the control group, the moths were
left unmanipulated. In the sham-treated group, we glued the annuli on the flagellum
at some distance from the pedicel-flagellar joint. Finally, in the JO-restricted group,
we glued the pedicel-flagellar joint thereby reducing or eliminating mechanosensory
feedback from the JO.
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Fig. 2.3 : Antennal response to airflow
IAA of (A) Control (blue, n=9), (B) Sham-treated (green, n=8), and (C) JO-restricted
moths (red, n=9). The initial IAA was subtracted from the rest (baseline subtraction) to
clearly visualize the response to airflow. Different shades represent different individuals.
Overlay around each line represents the standard error of the mean (s.e.m). (D) Box-and-
whisker plots of Spearman’s correlation coefficient (rs) of IAA response to airflow for all
treatments. The coefficient quantifies the monotonicity of IAA vs. airflow (+1/−1 perfect
monotonic increase/decrease; median – Control: −0.94, JO: 0.44, Sham: −0.96). The
grey box represents the central 50% data around the median (red line). The whiskers repre-
sent 1.5 times the interquartile range. Asterisks represent statistically different comparisons
(Kruskal–Wallis, Nemenyi test, p�<�0.01).
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2.3.1 Johnston’s organ mediate airflow-dependent antennal
positioning

During tethered flight, control moths decreased their IAA with increasing frontal air-
flow (Figure 2.3A, Figure A.2A). This active modulation of antennae in response to
airflow is henceforth termed as airflow-dependent antennal positioning. Although the
initial IAA was different for each individual, in all cases it decreased monotonously as
airflow varied from approximately 0 to 3 m/s, and stabilized when airflow exceeded
about 3 m/s (Figure 2.3A, Figure A.2A). In sham-treated moths, for whom the third
or the fourth annulus of the antenna was glued instead of the pedicel-flagellum joint,
we observed a reduction in IAA with increasing airflow, similar to the control set
(Figure 2.3B, Figure A.2B).

In moths with restricted pedicel-flagellar joints, airflow-dependent antennal positioning
was abolished (Figure 2.3C, Figure A.2C) although these moths were still capable of
moving their antennae. The IAA of these moths remained unchanged at the low
airflow values, increasing slightly at higher airflows, perhaps due to aerodynamic drag
(Figure 2.3C, Figure A.2C).

The Spearman’s rank correlation coefficient (rs) between IAA and airflow (Figure 2.3D,
see section 2.2) was close to -1 for both control and sham-treated moths, implying a
decrease in IAA with increasing airflow. In contrast, in the pedicel-flagellum restricted
moths, mean rs is close to 0, suggesting that their antennal position remains relatively
unchanged with airflow (Figure 2.3D, p < 0.01, Kruskal Wallis test, Nemenyi test).
Thus, only specific restriction of the pedicel-flagellum joint causes cessation of airflow-
dependent antennal positioning, implying that mechanosensory inputs from the JO are
required for this behavior to occur.

2.3.2 Conceptual model of airflow-dependent antennal posi-
tioning

The results described above are also consistent with previous data in honeybees (Khu-
rana and Sane, 2016), indicating an evolutionarily conserved mechanism. Although
mechanosensory inputs from JO control antennal responses to airflow, restricting these
inputs by gluing pedicel-flagellar joint does not affect the ability of the animal to po-
sition antennae at flight-onset. Additionally, in honeybees, antennal response to other
modalities, e.g. vision, is not affected upon JO-restriction (Khurana and Sane, 2016).
Thus, initiation and maintenance of antennal position is independent of JO-mediated
changes.

Along with sensory inputs from the JO, the antennal motor system receives propriocep-
tive inputs from Böhm’s bristles (Krishnan et al., 2012; Sant and Sane, 2018). Antennal
movement stimulates neurons underlying these sensory hairs, in turn activating anten-
nal motor neurons and associated muscles with latencies of ~10ms (Krishnan et al.,
2012). Antennae are rendered immobile upon Böhm’s bristles ablation, underscor-
ing their importance in initiation and maintenance of antennal position (Krause et al.,
2013; Krishnan et al., 2012; Okada and Toh, 2000). Thus, mechanosensory inputs from
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Fig. 2.4 : Conceptual model for airflow-dependent antennal positioning
The model comprises two sub-circuits. “Antennal positioning reflex” is a fast sub-circuit that
maintains antennal position at set-point (preferred position) using proprioceptive feedback
from Böhm’s bristles. “Set-point modulation circuit” continually modulates the set-point
based on airflow, via the JO.
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Böhm’s bristles are essential for maintaining stable antennal position. On the other
hand, restricting inputs from JO by gluing the pedicel-flagellar joint does not affect
the ability to position antennae, but disrupts airflow-dependent antennal movements
(Figure 2.3C, Figure A.2C).

These and previous results suggested a conceptual model of antennal positioning behav-
ior (Figure 2.4), where antennal position is encoded by Böhm’s bristles which activate
antennal muscles via a reflex arc (Krishnan et al., 2012). This reflex operates as a
negative feedback loop to ensure initiation and maintenance of antennal position dur-
ing flight. JO-mediated airflow-dependent changes are achieved by modulation of the
set-point (equilibrium position) of this negative feedback loop. Ablation of Böhm’s
bristles would break the feedback loop, disabling antennal positioning. On the other
hand, restriction of JO inputs would cease airflow-dependent movements while still
allowing initiation and maintenance of antennal position.

We propose that the antennal positioning behavior comprises two hierarchically ar-
ranged sub-circuits (Figure 2.4); one that maintains antennae at a preferred position
or set-point using proprioceptive feedback from Böhm’s bristles (antennal positioning
reflex) and another that modulates the set-point using sensory inputs from multiple
modalities (set-point modulation circuit). Using an electromagnet set-up, we altered
proprioceptive feedback from the Böhm’s bristles by perturbing antennal position (Fig-
ure 2.1B, see section 2.2). We could not ablate Böhm’s bristles because removal of
proprioceptive inputs renders the antennae immobile (Krishnan et al., 2012). Inputs
to the set-point modulation circuit were experimentally altered by changing airflow
and restricting the JO (Figure 2.1A, Figure 2.2). Therefore, using both experiments
and computational simulations, we tested the hypothesis that airflow-dependent an-
tennal positioning results from these two components working in concert, allowing its
set-point to be tunable.

2.3.3 Airflow modulates set-point of antennal positioning re-
flex

To test the hypothesis that airflow-dependent mechanosensory feedback from the JO al-
ters the set-point at which the antenna is maintained, we asymmetrically perturbed the
left antenna with an electromagnet at different values of frontal airflow (Figure 2.1B,
see section 2.2). In these experiments, the right unperturbed antenna served as internal
control. The position of both antennae were separately monitored, and the angle of
each antenna was calculated with respect to the head vector to quantify the magnitude
of electromagnet perturbation (Figure 2.1C, see section 2.2). The average position of
the right (unperturbed) antenna remained unaffected by magnetic perturbations deliv-
ered to the contralateral antenna (Figure 2.5A,C). Thus, the reflex loop on each side
of the antenna was independent of the contralateral antenna, consistent with previous
findings that the anatomical projections of the Böhm’s bristles do not cross the mid-
line (Krishnan et al., 2012; Sant and Sane, 2018). After perturbation was removed by
switching off the electromagnet, the left (perturbed) antenna returned to the set-point
corresponding to the airflow value (Figure 2.5B,D). For greater values of frontal airflow,
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Fig. 2.5 : Antennal response to perturbations in control moths
(A) Right antenna (internal control) was unaffected by left antennal perturbations (depends
only on frontal airflows). (B) Left antenna actively corrected position upon electromagnet
release (perturbations in grey). Corrected angle depended on frontal airflow. Sometimes
moths varied their corrected positions during trials (example response - 1.5 m s−1), perhaps
due to set-point modulations by other modalities (Figure 2.4). (C) Azimuth-elevation plots
show airflow based clustering of right antennal position. (D) Left antenna formed five
clusters (four airflows, perturbed location). (E) Set-points of control moths decreased with
increasing airflow. Different shades indicate different trials (n=11 trials from 9 moths). The
overlay indicates s.e.m.
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the antennae moved forward to smaller set-points (Figure 2.5E). Thus, the presence
of airflow causes the state of the antennal motor neurons to change, thereby altering
the motor commands to the antennal muscles and hence the set-point of the antennal
position.

2.3.4 Antennal positioning reflex is unaffected by absence of
sensory inputs from Johnston’s organs

If mechanosensory inputs from the JO only modulates the internal state (set-point)
of the antennal motor neurons, we hypothesized that restricting it should not affect
the antennal positioning reflex (Figure 2.4). To test this, we perturbed the antennae
of moths in which the pedicel-flagellar joint was glued, thereby restricting the input
from the JOs. Such moths could consistently correct for perturbations of the antennae
(Figure 2.6A-D), but their set-points did not decrease in response to airflow (Fig-
ure 2.6E). Spearman’s rank correlation coefficients (rs) between set-points and airflow
were significantly different for control and JO-restricted moths (Figure 2.6F, p < 0.01,
Wilcoxon rank sum test). JO restriction, therefore, only alters set-point modulation
due to airflow and not the ability to maintain antennal position.

2.3.5 Simple linear models approximate antennal positioning
reflex

Next, we used a control theoretic framework to compare the dynamics of the antennal
positioning reflex at different set-points. We first expressed the conceptual model (Fig-
ure 2.4) as a linear control theory model, with the transfer function L(s) representing
the error correction dynamics of the antennal positioning reflex (Figure 2.7). L(s) was
represented as a standard set of transfer functions ranging from Proportional (P), In-
tegral (I), Proportional-Integral (PI), Proportional-Differential (PD), Double-integral
(II) and Proportional-Integral-Differential (PID) systems (Figure 2.7, see section 2.2).
These models were fit to the return trajectory of a perturbed antenna using the System
Identification Toolbox in MATLAB.

We used two measures to quantify the goodness of fit of transfer functions - adjusted
coefficient of determination R2 and normalized akaike’s information criterion (nAIC).
R2 estimates the percentage of variation in the raw data explained by a model. nAIC,
on the other hand, quantifies the information lost when a model is used instead of raw
data. Both measures penalize models with a high number of parameters (i.e. complex
models). The most parsimonious model, therefore, would have a high adjusted R2 and
a low nAIC. These two measures, when combined, provide a reliable way of estimating
the goodness of fit of transfer functions.

Transfer functions I, PI, PD and PID best fit the error correction dynamics underlying
antennal return trajectories based on both measures (control: Figure 2.8A-D, JO-
restricted: Figure A.3A-D; parameters given in Table 2.1). Goodness-of-fits of these
models were statistically different from other models (P, II), but not from one another
(control: Figure 2.8C,D, JO-restricted: Figure A.3C,D). Simple linear models, such as
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Fig. 2.6 : Antennal response to perturbations in JO-restricted moths
(A) Right antenna was unaffected by perturbations. (B) Left antenna was actively corrected
to the same position regardless of airflow in JO-restricted moths (except for 4 m s−1). Spikes
in position were caused by antennal movement due to ipsilateral front leg. (C-D) Azimuth-
elevation plots of (C) right and (D) left antennal position. At 4 m s−1, the antenna was
unable to maintain position and drifted backward. (E) Set-points of JO-restricted moths
were airflow independent (n=6). (F) Box plots of rs for set-points vs. airflow (Control: n=11
trials, 9 moths; JO: n=6 trials, 6 moths; Wilcoxon rank sum test, p<0.01; median—Control:
−0.69, JO: 0.14).
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Control theoretic formulation

Set-Point L(s)

Electromagnet

perturbation

Sensor

noise

Antennal

position
r(t)

y(t)

e(t) y(t)

-1

Airflow

(1) Proportional (P)

(2) Integral (I)

(3) Proportional-

     Integral (PI)

(4) Proportional-

           Differential (PD)

(6) Proportional-

Integral-

           Differential (PID)

System model Transfer function Graphical representation

(5) Double Integral (II)

Fig. 2.7 : Control theoretic formulation
To analyze the return characteristics of the antenna, we reformulated Figure 2.4 using a
control theoretic framework. The model takes in set-point as input, which is modulated by
airflow via JO. Output is antennal position, which is sensed and fed back by Böhm’s bristles.
The error in position is convolved with a transfer function to obtain the output. We used six
transfer functions—Proportional (P), Integral (I), Proportional-Integral (PI), Proportional-
Differential (PD), Double-Integral (II) and Proportional-Integral-Differential (PID).
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Fig. 2.8 : System model fits on antenna return trajectories
(A) A representative antennal return trajectory is plotted in grey, and model fits are plotted
in color. I, PI, PD and PID fit the representative antennal return trajectory well (>80% fit).
The integral model (I) was most parsimonious based on system components. (B) The integral
model fits return trajectories of all airflows (shown for one representative dataset). Solid line
represents raw data and its color represents airflow for the return trajectory. Dashed lines
represent integral model estimations. (C,D) Box plots of (C) coefficient of determination
(R2) and (D) normalized Akaike information criterion (nAIC) for all system models. Fits
based on I, PI, PD, PID models were significantly different from the rest (a, b, c represent
statistically different groups, Kruskal Wallis, Nemenyi test, p<0.01; n�=�133 trajectories;
median R2—P: −0.61, I: 0.81, PI: 0.80, PD: 0.83, II: 0.63, PID: 0.81; median nAIC—P:
3.73, I: 1.40, PI: 1.43, PD: 1.29, II: 2.59, PID: 1.56). (E) Predictive capabilities of the
integral model. A representative return trajectory of the antenna at 4 m s−1 is plotted in
grey. Dashed lines represent integral model predictions based on one airflow (indicated by
their colors).
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the integral system (Figure 2.8B, Figure A.3B), can hence closely fit the error correction
dynamics of the antennal positioning reflex.

2.3.6 Error correction dynamics of antennal positioning reflex
is independent of set-point

The antennal positioning reflex is operational even as antennal set-point varies with
different frontal airflows, and it is also active when feedback from the JO is severely
reduced. This suggests that the error correction dynamics of the antennal positioning
reflex are independent of set-point (Figure 2.4). We tested this by quantifying our
ability to predict the return trajectory of the antenna at different airflows based on the
dynamics from one airflow value. Transfer functions I, PI, PD and PID with constants
based on single airflow values reliably predicted the dynamics of all airflow values (con-
trol: Figure 2.8E, Figure A.3E,F; JO-restricted: Figure A.3G-I). The goodness-of-fits
of these predictions were equivalent to fitting the transfer function on experimental
data (compare Figure 2.8C,D Figure A.3E,F; Figure A.3C,D,H,I). Simple linear mod-
els can thus closely predict the error correction dynamics of the antennal positioning
reflex for all antennal set-points. Additionally, the consistent dynamics in error cor-
rection, irrespective of set-point, suggest an active rather than passive mechanism.
These results support a simple linear feedback loop with an adjustable set-point as the
underlying neural circuit for antennal positioning.

2.3.7 A simple model neural network reproduces core charac-
teristics of airflow-dependent antennal positioning be-
havior

The above experiments and control theoretic analysis showed that airflow-dependent
antennal positioning arises from an interplay between the antennal positioning reflex
and a circuit that modulates the set-point. Additionally, the antennal positioning
reflex can be modeled as simple linear models which both fit and predict their return
dynamics irrespective of set-point. These models formally describe and characterize the
computations underlying airflow-dependent antennal positioning, but do not provide
a mechanistic explanation of how neural circuits perform these computations. We
therefore proposed a minimal neural circuit that incorporates the simple linear models
described above and simulated it as a feasibility test. Because a group of linear models
(I, PI, PD, PID) fit and predict the antennal return dynamics equally well, we modelled
the minimal neural circuit as an integral model on the basis of parsimony (Figure 2.7).

The minimal neural circuit is based on electrophysiological and neuroanatomical data
from previous studies, which showed that mechanosensory neurons underlying Böhm’s
bristles activate antennal motor neurons, likely via direct connections (Krishnan et al.,
2012; Sant and Sane, 2018). Therefore, in the minimal circuit, mechanosensory neurons
were treated as simple on–off neurons that monosynaptically activate antennal motor
neurons (Figure 2.9, see section 2.2). On the other hand, mechanosensory inputs
from JO do not appear to form synapses with motor neurons (Sant and Sane, 2018).
Hence, in our minimal circuit model, we assumed that they connected via interneurons
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Table 2.1 : Fitted parameters of control theoretic models.
Mean fitted parameter values for each of the control theoretic models along with the standard
error of the mean (s.e.m.)

Model Parameter Control JO-restricted
Neural circuit
with intrinsic

setpoint

Neural circuit
with

modulated
setpoint

P Kp

277,183.36�
±

12,165.88

183,833.13�
±

17,525.61

184,733.75
±

�19,417.91

458,754.41
±

5584.12

I Ki

22.50�
±

1.71

21.80�
±

2.70

13.88
±

0.27

11.91
±

0.11

PI

Kp

40.60
±

5.45

33.16
±

3.43

15.47
±

1.44

36.24
±

1.34

Ki

543.07
±

27.75

485.98
±

48.47

218.90
±

19.20

440.92
±

15.44

PD

Kp

81,856.67
±

15,559.45

67,682.04
±

20,216.36

66,715.73
±

7703.52

7.97
±

1.06

Kd

3363.48
±

510.77

3175.06
±

733.58

4677.09
±

503.23

1.16
±

0.09

II Ki

31.65
±

7.62

97.59
±

28.30

0.04
±

0.00

0.09
±

0.01

PID

Kp

12.32
±

1.22

10.27
±

1.42

4.05
±

0.55

3.39
±

0.41

Ki

50.15
±

15.91

89.32
±

45.05

55.32
±

9.30

22.45
±

3.47

Kd

1.84
±

0.39

3.16
±

1.61

0.22
±

0.02

0.40�
±

�0.04
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Interneuron

Motor 

neurons

Motor 

neurons

Hair plates

(Böhm’s 

bristles)

Antennal

muscles

Johnston’s organs

Antennal Mechanosensory and motor cortex

Fig. 2.9 : Model neural circuit
Motor neurons summate activity from mechanosensory neurons from Böhm’s bristles and
interneurons transmitting sensory inputs from the JO. The connectivity between the motor
neuron and the muscles give rise to the negative feedback in Figure 2.4; motor neurons
activate muscles which, upon contraction, reduce feedback from the hair plates, thereby
decreasing their own activity. Muscles, due to the slow calcium integration times, integrate
error in position. Sensory inputs from JO asymmetrically activate the motor neurons, thereby
modulating antennal set-point.

49



2.4. Discussion

(Figure 2.9). Finally, we modeled motor neurons as simple integrate-and-fire neurons
that pool incoming activity and control antennal muscles, and thus also the antennal
position (Figure 2.9).

As a template for the above neural circuit, we used the scape–pedicel joint with only
one degree of freedom to simplify the model mechanics. As in the actual case, the
model pedicel has two proprioceptive Böhm’s bristles fields that sense its movement
relative to the scape, and two muscles that control this motion (Figure 2.1C, Fig-
ure 2.9) (Kloppenburg et al., 1997; Sant and Sane, 2018). This minimal circuit can
correct position and maintain it in response to simulated antennal perturbation (Fig-
ure 2.10A, Figure A.4A,B). The set-point of this circuit could also be modulated by
changing firing rates of the interneuron carrying information from JO (Figure 2.10B,
Figure A.4A,B). It maintained position at the modulated set-point despite external
perturbations (Figure 2.10B, qualitatively similar to Figure 2.5B).

We further analyzed the neural circuit using an identical control framework as in the
behavioral data, and found that its dynamics were recapitulated by I, PI, PD and PID
systems (Figure 2.10C-D, Figure A.4C; parameters given in Table 2.1). PID fit the
data better than I (median: 1.00, 0.97, respectively), possibly because it also fit the
noise due to the Poissonian nature of model neurons (Figure 2.10E, see section 2.2).
Both models captured the return dynamics for all simulated set-points (Figure 2.10E,
Figure A.4C). Moreover, they predicted the return dynamics at all set-points based
on the dynamics of any one (Figure A.4D-F). Thus, the realized neural circuit maps
onto the control theoretic model, providing a mechanistic basis for airflow-dependent
antennal positioning.

2.4 Discussion

2.4.1 A tunable set-point enables multisensory modulation of
the antennal positioning reflex

Antennal positioning behavior in moths consists of two behaviors that operate at dif-
ferent timescales. The first is antennal deployment at the onset of flight and the
subsequent maintenance of this position during flight; this requires rapid, wingbeat
timescale error corrections in antennal position (antennal positioning reflex). The sec-
ond behavior of stimulus-dependent antennal positioning involves slower modulation
of position based on multisensory inputs like optic flow, airflow and odor. Whereas
the latency of the antennal positioning reflex is typically < 10ms (Krishnan et al.,
2012), the latencies of the modulatory inputs are much longer (ex. optic flow: 35ms to
60ms Krishnan and Sane (2014)). Because antennae are crucial in sensing olfactory,
mechanosensory, hygrosensory and thermosensory stimuli, control and maintenance of
their position is critical.

Antennal positioning at flight onset and its airflow-dependent modulation have been
observed in diverse insects (honeybees, locusts, flies (Gewecke, 1974; Heran, 1959;
Mamiya and Dickinson, 2015). Airflow-dependent modulation is mediated by the JO,
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Fig. 2.10 : Simulated airflow-dependent antennal positioning
(A-B) Simulated perturbation of model in Figure 2.9. (A) Without set-point modulation,
simulated antennae maintained position at an intrinsic set-point. Colors represent levels of
perturbation. (B) Set-point was modulated by asymmetric excitation of the motor neurons.
Simulated antennae corrected and maintained position based on set-point. Colors represent
set-points. (C) I, PI, PD, PID fit representative simulated antennal trajectory well (>80%
fit). Integral model (I) was most parsimonious. (D) Fits of integral model on return tra-
jectories for different set-points. (E) Box plots of R2 (a–d represent statistically different
groups, Kruskal–Wallis, Nemenyi test, p<0.01; n�=�100 trajectories; median R2—P: −1.23,
I: 0.97, PI: 0.97, PD: 1.0, II: 0.94, PID: 1.0)
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which likely senses antennal deflections due to aerodynamic torques (Gewecke and
Heinzel, 1980; Heinzel and Gewecke, 1987; Staudacher et al., 2005). How this behav-
ior aids in sensory acquisition is as yet unclear; airflow-dependent modulation does
not seem to maintain aerodynamic torques (Figure A.2G-I, also Gewecke and Heinzel
(1980); Heinzel and Gewecke (1987)), and depends on multiple sensory inputs including
optic flow (Khurana and Sane, 2016).

We investigated the mechanisms underlying control and maintenance of antennal po-
sition and developed a control theoretic and neural circuit model to account for the
observed behavior based on the framework described in chapter 1. At the core of these
models is a fast, linear, negative feedback loop that reflexively maintains antennae
at a fixed set-point on stroke-to-stroke timescales. Overlying this feedback loop are
slower, modulatory influences due to frontal airflow, and presumably other modalities
that alter this set-point in proportion to the appropriate sensory input. When these
modulatory inputs are reduced (e.g. by restricting JO), moths retain their ability to
maintain antennal position at an arbitrary set-point, but do not alter the set-point
at which the antennae are held (Figure 2.6). For instance, JO-restricted honeybees
retain the ability to modulate antennal position based on optic flow (Khurana and
Sane, 2016). This suggests the existence of an intrinsic set-point for antennal position
in the absence of other sensory cues. In the presence of other sensory cues however,
the set-point is modulated to a new value (Figure 2.5, also Khurana and Sane (2016)).
Although airflow-dependent changes appear to symmetrically modulate set-points of
both antennae (further investigated in chapter 3), this may not be true for other
modalities. Indeed, asymmetric responses of antennae have been observed in previous
studies on optic flow and odor (Erber et al., 1993; Honegger, 1981; Krishnan and Sane,
2014; Lambin et al., 2005; Mamiya et al., 2011; Okada and Toh, 2006; Yamawaki and
Ishibashi, 2014), perhaps due to unequal modulation of the set-points of local reflex
loops.

2.4.2 Linear response characteristics of antennal positioning
reflex

To further illustrate the effect of set-point modulation on the antennal positioning re-
flex, we modeled the error correction dynamics of the perturbed antenna using control
theoretic methods. Because the precise details of the muscle and the biomechanical
properties of the antennal motor system were not known to us, we modeled the whole
antennal circuit as a single system, which includes both the neural controller and the
biomechanical plant (chapter 1). The names of the system models are abbreviations for
the mathematical transfer functions. Although our model nomenclature resembles neu-
ral controller models in literature (Beatus et al., 2015; Cowan et al., 2006; Whitehead
et al., 2015), these are in fact systems-level transfer functions.

We used standard linear models to fit error correction dynamics and found that they
depended only on the error between current position and set-point. Dependence on er-
ror in current position instead of absolute position indicates an underlying mechanism
of active error correction rather than passive mechanical rebound. The linear control
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theoretic model L(s) captures dependence of output position with respect to this error,
with the integral model being mathematically equivalent to a decaying error exponen-
tial. Other higher-order models (PI, PD, PID) can capture more complex dependencies
between output and error. We provided different amplitudes of step perturbations, but
this disturbance was insufficient to distinguish differences in performances of higher-
order models. Other stimuli (e.g. sum of sines, white noise or chirps) may provide
better resolution on which of the four models (I, PI, PD, PID) best approximates error
correction dynamics of the antennae for a variety of disturbances [section 1.2; Madhav
et al. (2013); Roth et al. (2016); Roth et al. (2011)].

Our alternate hypothesis was a non-linear model in which error correction dynamics
depend on antennal set-point. Such dynamics could occur if modulatory inputs like
optic flow or airflow alter not just the set-point, but also the time constants of control
models. Such a system can maintain the antenna at set-point, but the error correc-
tion dynamics would change as the set-point changes. In such scenarios, predicting
antennal return dynamics at different set-points would not be possible based on just
one set-point. To differentiate the above scenario from the linear model (Figure 2.4,
Figure 2.7), we quantified how well these models could predict antennal dynamics in
other airflows based on dynamics of just one case. Such predictions were only possible
in the linear case, for which the underlying dynamics did not alter based on set-point.
The predictions explained a large range of return trajectories in all airflows (median of
0.76 for I model, Figure A.3), suggesting that the linear model was sufficient.

In our control model, set-point was assumed to be fixed for each value of airflow. This
allowed us to isolate and characterize the inner loop dynamics, thereby identifying its
stereotypic error correction (Figure 2.7). Because goodness-of-fits for these models were
high (Figure 2.8C,D), we inferred that inner loop timescales were faster than those of
the set-point modulation circuit. We concluded that the Böhm’s bristle-mediated reflex
loop rapidly maintains antennal position, whereas feedback from JO slowly modulates
set-point based on airflow. However, airflow sensing by JO and resulting set-point
modulation have their own temporal dynamics, which may interact with those of the
inner feedback loop during flight. This may be especially true in variable airspeed
conditions, e.g. rapid flight maneuvers or a sudden wind gust. This motivates the need
for experiments and modeling specifically targeted towards understanding how insect
nervous systems disambiguate the interacting timescales of these two circuits.

2.4.3 Model neural circuit for stimulus-dependent antennal
positioning

Based on the linear models and existing anatomical and physiological data (Krishnan
et al., 2012; Sant and Sane, 2018), we proposed a minimal neural circuit model that
could maintain and modulate position based on sensory stimuli. Because a whole group
of models were able to fit and predict the error correction dynamics of the antennal
positioning reflex, several neural circuits are possible. The integral model was used
based on parsimony of components and formed the basic framework for higher order
models. We used this control theoretic approach to generate mechanistic hypotheses
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of underlying neural circuits that perform this computation.

We decoupled contributions of the neural circuit (controller) from the biomechanical
system (plant), based on the time constant of the integral system (unpacking the
neuromechanical black box; section 1.4). The integration constants of the I model were
in the same range as those of muscle calcium dynamics [Table 2.1; Chapman (2012);
Staudacher et al. (2005)]. We therefore assumed that muscles perform this integration
in the neural circuit model, making them the biomechanical plant. Estimating the error
between set-point and current position was the only remaining computation, which
could be performed by the neural controller. Computing the error requires a difference
operation, either due to inhibition or antagonistic excitation. We chose antagonistic
excitation over inhibition due to the prevalence of excitatory neurons in the antennal
motor system (Staudacher et al., 2005). Output of a neural circuit with the above
architecture matched observed behaviors (compare Figure 2.10B with Figure 2.5B).

The model neural circuit captures the information flow from Böhm’s bristles and JO
to the antennal muscles. Böhm’s bristles control motor neuronal activity via negative
feedback (inhibition/antagonistic excitation), whereas JO modulates its set-point. The
specific set-point modulation can happen in multiple ways, including activation of
antennal motor neurons by JO either via interneurons or by direct synapses onto them.
However, the latter possibility is not supported by neuroanatomical data, which show
very little co-localization between axonal arbors of JO and dendritic fields of Böhm’s
bristles (Sant and Sane, 2018). This modulation translates to asymmetric activation
of antennal motor neurons by JO, which is a key feature of information flow from JO
in the model neural circuit (Figure 2.9).

Here, the only major computation performed by the neural controller is summation.
The motor neuron was modeled as an integrate-and-fire neuron that integrates synap-
tic inputs (excitatory post-synaptic potentials - EPSPs) to fire spikes. Because of this
membrane voltage integration at fast timescales, the output firing rate is proportional
to input firing rate. Mathematically, the computation performed by the motor neuron
is equivalent to summation of all its inputs and multiplication by a gain. This linear
computation makes the neural controller extremely fast. Such linear response charac-
teristics are a feature of higher order fast behaviors, such as flower tracking in moths
(Roth et al., 2016; Sponberg et al., 2015) and wall-following in cockroaches (Cowan
et al., 2006) suggesting that this may be a general feature for fast behaviors.

The intrinsic set-point of our model neural circuit (i.e. position in the absence of any
modulatory sensory inputs) results from both the mechanical placement of bristles
and muscles, and the underlying sensory to motor neuron connectivity. In absence of
modulation, equal activation of both Böhm’s bristles results in simultaneous muscle
activation on both sides (Figure 2.9, Figure 2.10A). JO feedback can modulate this
set-point by asymmetrically activating the motor neurons without changing error cor-
rection dynamics (Figure 2.10B). Altering error correction dynamics requires changing
the overall excitability of both muscles, which in turn requires symmetric excitation/in-
hibition of all motor neurons/muscles. For example, in crickets, inhibitory or excitatory
dorsal unpaired median (DUM) neurons symmetrically innervate antennal muscles on

54



Modulation of antennal position

both sides (Allgäuer and Honegger, 1993; Bräunig et al., 1990; Honegger et al., 1990;
Staudacher et al., 2005). Activity in these neurons may change dynamics without al-
tering set-point. Such changes might explain the slow return to baseline seen in a few
trials (Figure 2.5B, Figure A.7).

Can this model be extended to other systems? The reflexive activation of motor neurons
due to mechanosensory feedback, the basis of the model neural circuit for the antennal
motor system, is also observed in other systems. For example, wing stretch receptors in
locusts monosynaptically activate wing depressor motor neurons while simultaneously
inhibiting wing elevator motor neurons (Burrows, 1975). Stretching the wing during
an upstroke activates muscles that initiate a downstroke, thereby indirectly reducing
wing stretch. Similarly, hair plates in certain segments of insect legs, which are likely
precursors of the Böhm’s bristles (Krishnan and Sane, 2015), sense changes in joint an-
gles and directly activate muscles that reduce these angles (Kuenzi and Burrows, 1995;
Pearson et al., 1976; Trimarchi et al., 1999; Wong and Pearson, 1976). These examples
are analogous to activity of Böhm’s bristles in the model proposed here (Figure 2.9),
in which antennal position is stabilized via antennal muscles, but with the additional
attribute that it is tunable. In such feedback loops, the intrinsic set-points depend on
mechanosensory feedback and its influence on the associated motor neuron, whereas
modulation of the set-point may be controlled by interneurons synapsing onto this
motor neuron (Figure 2.9). The model neural circuit, therefore, provides a functional
hypothesis for modulation of rapid reflexes with similar connectivity (chapter 1).

2.4.4 State based modulation of antennal movements
Antennal positioning, as examined in this study, is an example of state-dependent be-
havior in flying insects. Antennal position impacts acquisition of both mechanosensory
and olfactory cues. For instance, active forward movement of the antennae with increas-
ing airflow may potentially help restrict the flagellum to operate in the linear range of
the pedicel-flagellar joint, thus enabling reliable acquisition of airflow-related and other
flagellar vibrations (Gewecke and Heinzel, 1980; Heinzel and Gewecke, 1987). However,
this may diminish the ability of the antenna to sample the odor space around the insect.
On the other hand, if the antennae are held at a large angle for maximal odor sampling,
the resultant increase in the aerodynamic drag may affect its mechanosensory function.
This sets up a potential trade-off in which increasing sensitivity of one (olfactory) cue
compromises sensitivity of the other (mechanosensory). In addition to mechanosensory
and olfactory cues, antennal position is also influenced by visual feedback (Khurana
and Sane, 2016; Krishnan and Sane, 2014; Mamiya and Dickinson, 2015), with conse-
quences on obtaining both olfactory and mechanosensory feedback. Such trade-offs for
optimal acquisition of sensory stimuli have received very little attention.

The linear integration model proposed here suggests a specific mechanism by which
such multiple cues may be integrated by the antennal motor neurons. A tunable
reflex (Figure 2.9) would ensure that the antenna has both the necessary flexibility to
integrate and optimize the acquisition of diverse cues, while ensuring that its position is
sufficiently stable to reliably acquire information. The intensity or requirement of each
cue would then determine the new set-points for the antennae, while the Böhm’s bristles
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mediated antennal positioning reflex would ensure that the set-point is maintained
in face of external perturbations. Because the antennal positioning system and the
associated neural circuits are fairly conserved (Sant and Sane, 2016), it seems likely
that the tunable reflex proposed here can be used to understand antennal movements
in diverse insects.
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Chapter 3

Modulation of set-point by the
Johnston’s organ

3.1 Introduction
The fast yet controlled flight exhibited by jet-fighters and insects alike requires closed
loop control (chapter 1). Insects rely on heavily on mechanosensory feedback from the
antennae for fast proprioceptive feedback (Sane et al., 2007). This is then coupled
with slower visual feedback from compound eyes to stabilize flight on a stroke-to-
stroke basis (Warrant and Dacke, 2011). Additionally, insect antennae are multimodal
probes; apart from detecting inertial forces required for flight stability (Sane et al.,
2007), the antennae house olfactory receptors and are critical for sensing food and
mates (Schneider, 1964). Positioning of antennae is therefore essential for both stroke-
to-stroke flight stability, as well as for longer timescale behaviors like odor tracking.

In the previous chapter (chapter 2), we showed that moths achieve stable antennal
positioning with slower, context-specific modulation using a tunable feedback loop.
Stable positioning at short timescales is reliably maintained by a local sensory-motor
reflex which depends on rapid, continuous proprioceptive feedback from the Böhm’s
bristles. Flexible positioning on longer timescales relies on modulation of the set-
point of this rapid feedback loop. In moths, we also showed that airflow-dependent
modulation is mediated by the Johnston’s organ (JO), a mechanosensory organ that
senses passive vibrations of the antenna. Similar modulation of set-points perhaps
underlies other context-based antennal positioning seen in insects (Erber et al., 1993;
Gewecke, 1974; Heran, 1959; Honegger, 1981; Khurana and Sane, 2016; Krishnan and
Sane, 2014; Lambin et al., 2005; Mamiya et al., 2011; Okada and Toh, 2006; Staudacher
et al., 2005; Yamawaki and Ishibashi, 2014).

How does this context-specific set-point modulation affect acquisition of sensory infor-
mation by the antennae? Investigating this requires us to methodically characterize the
modulation of set-point by each individual modality as well as combinations of them.
This would allow us to generate and test out multi-modal hypotheses, as single-modal
hypotheses typically fail. For instance, one can hypothesize that airflow-dependent an-
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tennal positioning (chapter 2) counteracts increases in aerodynamic drag by reducing
the interantennal angle (IAA). Decreases in IAA should therefore result in a constant
torque (drag) on the antenna irrespective of frontal airflow. However, this is not the
case; the drag on the antenna increases with airflow despite the decreases in IAA (Fig-
ure A.2G-I; Gewecke and Heinzel (1980), Heinzel and Gewecke (1987)). Additionally,
antennae hold different positions for the same airflow when given different optic flow
cues (Khurana and Sane, 2016). Thus, the modulation of set-point, and its effect on
sensory acquisition, depends on a combination of cues. To test multi-modal hypotheses,
we require fine characterization of set-point modulation at a mechanistic level, using
electrophysiology and neuroanatomy (unpacking the neuromechanical blackbox, sec-
tion 1.4). These data would enable us understand the functional role of these sensory
inputs in maintaining antennal position and their effects on set-point.

Specifically, we investigate how sensory inputs from both JOs control the set-point of
each antenna. In addition to sensing airflow (chapter 2), JO senses flagellar vibrations
over a wide frequency spectrum (Dieudonné et al., 2014; Kamikouchi et al., 2009;
Patella and Wilson, 2018; Sane et al., 2007; Yorozu et al., 2009). This suggests the
necessity of an additional filtering step to ensure that only airflow-related vibrations
sensed by the JO are used to modulate antennal set-point. A recent study has shown
that sensory afferents from the JO extend into the AMMC but do not directly arborize
on the motor neurons (Sant and Sane, 2018), and are likely carried by interneurons.
Additionally, regions in fruitfly brains have been shown to contain tonotopic maps of
flagellar vibrations; the maps are generated by pooling mechanosensory inputs from
both JOs (Patella and Wilson, 2018; Suver et al., 2019). These tonotopic maps also
depend on the amplitude and phase of the input (Patella and Wilson, 2018). The
specific facets of this information that are relayed to the AMMC, and how they are
used to modulate the set-point of both antennae, are largely unknown.

What is the nature of JO mediated set-point modulation? We address this question
in the oleander hawkmoth, Daphnis nerii, using a combination of behavior and elec-
trophysiology (chapter 1). By restricting JOs unilaterally or bilaterally and measuring
its response to increasing frontal airflow, we map the flow of information from both
the JOs to the antennal motor system (structure of the set-point modulation circuit,
section 1.3). Next, we use a finely calibrated stimulus setup to deliver precise flagellar
vibrations while simultaneously recording from the extrinsic muscles of both antennae.
This allowed us to characterize how sensory inputs from the JOs modulate the activity
of antennal muscles (unpacking the neuromechanical black box, section 1.4). By pool-
ing behavioral and electrophysiological data, we draw inferences about the underlying
connectivity between the JO and antennal motor system.

3.2 Methods
Moth breeding

All experiments described in this chapter were performed on adult oleander hawkmoths,
Daphnis nerii. The moths used were mostly laboratory-bred, with a few moths obtained
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from wild pupae. Larvae were fed with Nerium oleander till they pupated, and placed
in saw-dust. Upon eclosion, the hawkmoths were placed in cloth cages and exposed
to natural day-night cycles. Typically, one to three day old moths were used for
experiments.

3.2.1 Behavior experiments
The below described behavior experiments were performed alongside with Nitesh Sax-
ena, a graduate student from Sanjay P. Sane’s lab. We performed the experiment and
digitized the videos together. I performed the subsequent data analysis.

Flagellum

Pedicel

Scape

Johnston’s organ 

mechanosensory 

neurons

Hair plates

(Böhm’s 

bristles)

Mechanosensory 

neurons

Right JO restriction

Left JO restriction

Fig. 3.1 : Unilateral JO-restriction experiments
Sensory inputs to the JOs are restricted by gluing the pedicel-flagellum joint. Two unilateral
restriction treatments were performed in a subset of moths (left restricted in blue; right
restricted in green). This was compared with antennal responses from control and bilateral
JO restriction treatments (chapter 2).

Experiment design

All behavioral experiments were carried out in a wind tunnel with a cross-section of
0.28m× 0.28m and a length of 1.2m (Figure 2.1A). Moths were tethered to the wind
tunnel using a dorsal magnetic tether and presented with a range of airflow speeds from
0m s−1 to 5m s−1 in steps of 0.5m s−1. The antennal response of the moth at every
airflow was recorded using two Phantom v7.3 high-speed cameras (Vision Research,
Wayne, NJ, USA) at 100 fps.

Before presenting airflow, either the left or the right pedicel-flagellum joint of the moths
was restricted using cyanoacrylate glue (Figure 3.1). Moths were kept under anesthesia
during this procedure and a neodymium magnet was attached to dorsal thorax (refer
to section 2.2 for more details). The duration of the entire procedure was 20min to
30min. After this, the moths were allowed to recover from the process for at least an
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hour. Post recovery, moths were tethered using the dorsally glued magnet and placed
in the wind tunnel.

Tethering the moths and placing them in the wind tunnel initiated flight in most moths.
Moths that did not actively elicit flight were given a brief airflow pulse of 0.5m s−1 to
1m s−1 or a tactile stimulus to the abdomen. Both these stimuli immediately triggered
a flight bout in moths. Once a flight bout was initiated, we presented the moth with
a series of airflow values. Images were acquired for one second from both cameras for
each value of airflow, which gave us approximately 30-35 wingbeats per airflow. Both
the cameras were calibrated before and after every experiment. In general, the airflow
response for each moth was obtained from one continuous flight bout.

Analysis of behavior

After each experiment, antennal responses for individual airflow speeds were extracted
from the recorded videos. Individual antennal positions were reconstructed from the
two camera views using Direct Linear Transformation (DLT) approach. Calibration of
the filming space and digitization of the antennae were done in MATLAB using custom
software (Hedrick, 2008). Initially, all 100 frames were digitized. The mean and stan-
dard deviation of antennal angles obtained from the complete dataset were comparable
to those computed from 10 randomly digitized frames in the dataset. Therefore, only
10 frames per airflow were digitized for the rest of the dataset.

Antennal angles were computed from the digitized antennal vectors (Figure 2.1C). All
antennal vectors were first projected onto the XY plane (ground plane), which roughly
corresponded to the head plane of the moth. The inter-antennal angle (IAA) was
defined as the angle between the left and the right antennal projections. To compute
left and the right antennal angles, a reference vector across the median (sagittal) plane
of the moth was required. This was computed as the vector orthogonal to a line joining
antennal bases. Left and right antennal angles were computed as the angle between
the respective antennal projections and the reference projection.

Spearman’s correlation coefficients were used to quantify the degree of correlated
changes in airflow and antennal angles. Because not all the coefficients for the three
treatments were not normally distributed (Lilliefors test, p < 0.01), non-parametric
tests were used to quantify statistically significant differences. Mann-Whitney U test
was used for two sample comparisons, and Kruskal Wallis and Nemenyi tests were used
for multiple sample comparisons.

All computations and statistical analysis were performed in MATLAB (The Math-
Works, Natick, MA, USA).

3.2.2 Electromyograms
The below described electromyograms were performed alongside Shivansh D. Dave,
a junior research fellow in Sanjay P. Sane’s lab. I developed the first version of the
stimulus setup based on methods from Mohan et al. (2017) (described below), and
wrote the associated computer programs. Shivansh joined in later, helped me improve
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both the stimulus setup and the experiment, and performed the final set of experiments.
I wrote the necessary codes to perform the data analysis presented in this chapter.

Capillary

Hall-effect

sensor

Speaker

Tungsten electrodeMagnet

Antenna

Fig. 3.2 : Apparatus for electromyograms of antennal muscles
The antennae were oscillated by a pair of speakers via glass capillaries. To ensure that only
the JO is stimulated, the other antennal joints were restricted using wax. The final motion
of the antenna was captured using a pair of Hall effect sensors which sensed the motion of
a neodymium magnet attached to the antennal end of the capillary (Mohan et al., 2017).
The activity of the muscles was recorded using a pair of custom made tungsten electrodes.

Preparation of the moth

To record the response of extrinsic antennal muscles to JO stimulation, we immobilized
the moth in a sawed-off syringe. The moth was first anesthetized by placing it in −20 °C
for 12 minutes. After anesthesia, its leg joints, wing joints, neck and labial palp were
immobilized using wax. The moth was then attached to the sawed-off syringe. The
immobilization procedure prevented movement of the antennae due to wing, leg or head
movements, thereby increasing the stability of the recording. The whole procedure took
about 5-7 minutes, during which the moth was kept under cold anesthesia.

The immobilized moth was placed under a microscope and two small windows were
cut below the antennae (Figure B.5A). Through the window, two of the three antennal
muscles could be seen (ALM, PLM and PDM; Kloppenburg et al. (1997), Sant and
Sane (2018)). We recorded from the anterior levator muscle (ALM), which was most
readily accessible. We pitched the head slightly downwards and restricted it, making
the muscle accessible for recording. Because the region where the window was cut has
very few hemolymph vessels and no proboscis muscles, we did not have to cut through
any tissue, making our preparation minimally invasive (Figure B.5B).

After making the window openings, the moth was mounted on to the stimulus setup
described below. The active antennal joints, i.e., the head-scape and the scape-pedicel
joints, were immobilized using wax. The antennae were inserted in and glued to cap-
illaries attached to the stimulus setup (Figure 3.2, Figure B.5C,D). This allowed us to
move only the pedicel-flagellar joint, thus stimulating only JO.
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Stimulus setup

The JOs were stimulated by vibrating the capillaries inside which the antennae were
inserted. Each capillary (Kimble #73811 - outer diameter 1.5mm, inner diameter
0.85mm) was affixed to the shaft which was directly mounted on the voice coil of two
stripped-down sub-woofer speakers (SAMCON, 4Ω, 25W; Figure 3.2, Figure B.5C).
The speaker mount was reinforced by a 3D-printed rectangular plate that doubled as
a cover for the speaker. A small neodymium magnet (3mm diameter, 1.5mm thick)
was attached at the free end of each capillary (approx. 5mm from the tip; Figure 3.2;
Figure B.5C,D). The first few annuli of the antennae were inserted into the free end
of the capillary and glued using a resin-based adhesive (Fevibond, Pidilite Industries
Ltd., India). The movement of the capillary, and consequently the antenna tip, was
measured using a Hall effect sensor which recorded the change in magnetic field due
to the moving neodymium magnet (Figure 3.2; Figure B.5C,D). The stimulus setup
described here is very similar to the one used in Mohan et al. (2017).

Stimulus generation and data acquisition were done using a data acquisition device
(National instruments, USB 6229). Stimuli were generated using custom written codes
in MATLAB and sent to the DAQ using the data acquisition toolbox. Custom-made
circuits were used to power the speakers and move them based on the voltage signal
from the DAQ. Voltage outputs from the Hall effect sensors were also amplified to a
range of −5V to 5V using custom-made circuits and acquired using the same data
acquisition system.

Recording setup

Tungsten rods (diameter: 0.004 inch , AM systems #719200) were sharpened by etch-
ing them in a 10 M sodium hydroxide (NaOH) solution. Two sharpened tungsten
electrodes were inserted into the ALM (Kloppenburg et al. (1997); Sant and Sane
(2018)), which could be seen through the two windows (Figure B.5A,B). An insulated
silver electrode, with the insulating layer removed only at the very tip, was inserted
in left compound eye, near the eye-rim region. It served as a stable reference for both
the tungsten electrodes. The voltages from the electrodes were amplified by a dual
channel extracellular amplifier in differential mode (1000x amplification, 1Hz-1 kHz
analog bandpass filter; Model 1800 2-channel microelectrode AC amplifier, A-M sys-
tems). The amplified signal was then acquired using the same data acquisition system
described above.

Experiment design

Before each experiment, the moth was prepared as described above and mounted on
to the stimulus setup. Next, the electrodes were inserted into the left and the right
ALMs. Finally, the Hall effect sensor and stimuli were calibrated (Appendix B).

In each experiment, the following types of stimuli were provided to the moth while
simultaneously recording from the antennal muscle:

1. Impulse: A short (<50ms) movement of the antennal tip was termed as an
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Fig. 3.3 : Vibration stimulus to the antennae
(A) Impulse stimulus (four displacements, indicated by different colors). (B) Step stimulus
(Duration - 3 s, four displacements). (C) Ascending (blue-grey) and descending (brown)
chirp stimulus (Duration - 3 s; start frequency - 0 Hz; end frequency - 150 Hz; peak-to-peak
displacement - 0.08 mm).
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impulse stimulus (Figure 3.3A). The maximum amplitude of stimulation was
~0.05mm, which translated to ~0.05° angular displacement for an average an-
tenna (~5 cm long). The antennae were stimulated both separately (only left,
only right) and together (both same direction, both different direction). These
combinations were repeated for four amplitudes - 0.05mm, 0.025mm, −0.025mm
and −0.05mm (Figure 3.3A) - providing 16 different impulse stimuli.

2. Step: A sustained (3 s) displacement of the antenna was termed as a step stimu-
lus (Figure 3.3B). The maximum displacement was ~0.2mm which translated to
~0.2° angular displacement of the pedicel-flagellum joint. Similar to the impulse
stimulus, the antennae were stimulated both separately and together, with four
different amplitudes (0.2mm, 0.1mm, −0.1mm and −0.2mm), (Figure 3.3B)
giving rise to 16 combinations of step stimuli.

3. Chirp: A sinusoid whose frequency linearly increased (or decreased) with time
was termed as a chirp stimulus (Figure 3.3C). In our experiments, the sinusoid
had a peak-to-peak amplitude of ~0.08mm (~0.08° angular displacement) and
its frequency changed from 0Hz to 150Hz in 15 s (Figure 3.3C). Both increasing
and decreasing chirps were provided to the antenna separately (only left and only
right) and together, giving rise to 6 different types of chirp stimuli.

Each experiment consisted of a maximum of 15 trials, with every stimulus repeating
twice per trial. The stimuli were generated and the amplified voltage from the mus-
cles was recorded at a sampling rate of 10 kHz. Typically, multiple experiments were
performed on the same moth, each containing multiple trials. Only trials which were
completed without interruption and lacked motion artifacts were accepted and further
analyzed. At the end of each experiment, the raw data from valid trials from every
experiment were pooled, compressed and stored as an hdf file for further analysis.

Data analysis

The raw data were loaded and a spike detection algorithm was run on every stimulus
trial. The spike detection algorithm performed the following steps:

1. Bandpass filter: EMG voltage from both the electrodes were bandpass filtered
to only allow frequencies between 10Hz to 1000Hz (4 pole). This retained the
frequencies typically associated with a spike while removing baseline fluctuations
and high-frequency noise (Figure 3.4A,B).

2. Threshold-based spike detection: Threshold was estimated from the dataset
to detect spikes. First, the standard deviation of noise was estimated by Equa-
tion 3.1 (Donoho and Johnstone, 1994; Quiroga et al., 2004). The spike threshold
was defined as four times the noise standard deviation (Figure 3.4B,C). Local
maxima/minima for signals above the threshold were categorized as spikes (Fig-
ure 3.4C). To ensure that the same spike is not detected twice, a refractory period
of 2ms was used. Although this sometimes caused two or more valid spikes from
multiple units to be detected as one spike (false negatives), this scenario was rare.
It was more frequent for one spike to be detected as multiple ones (false posi-
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Fig. 3.4 : Spike detection and sorting from raw EMG data
(A) Representative raw EMG, (B) filtered using a bandpass filter (10 Hz to 1000 Hz, 4 pole).
Spike threshold from Equation 3.1. (C) Spike detection. Data from the grey overlay in B
is expanded and shown here. (D), (E) Principal component analysis (PCA) of spikes. (F)
Detected spikes based on clusters from PCA. (G) Gaussian convoluted spike rate (GCSR).
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tives). The threshold + refractory period was sufficient to capture most spikes,
while ensuring that the same spike was not detected multiple times.

σn = median(
|x|

0.6745
) [3.1]

st = 4σn [3.2]
where,

σn = standard deviation of background noise
x = voltage signal from electrode
st = spike threshold

3. Spike identity detection: Once the spikes were classified, principal component
analysis (PCA) was used to find the optimum set of basis vectors that allowed
easy clustering. A spike profile was generated around the maxima/minima of the
spike - 5ms before the maxima/minima and 10ms after it (Figure 3.4F). This
gave rise to 150 sample points (sampling rate of 10 kHz), which resulted in 150
dimensions after PCA. Of these, the first few principal components explained 99%
of the variance, and were used for the cluster analysis. Typically, the first two
dimensions were sufficient to visually spot the clusters (Figure 3.4D,E). Calinski-
Harabasz method was used to detect the number of spike clusters (Caliński and
Harabasz, 1974). Kmedoids clustering was used to cluster and identify spikes
based on the first few principal components (Figure 3.4F). The cluster analysis
was done using the statistical and machine learning toolbox in MATLAB.

4. Gaussian convoluted spike rate (GCSR): Once the spikes were detected, a
Gaussian window with a standard deviation of 200ms was used to convert the
individual spiketimes into a continuous spike rate (Dayan et al., 2005). This
was done for all the spikes as well as for the individually identified clusters (Fig-
ure 3.4G). Both the spikes and the GCSR were used for data visualization and
further analysis.

Experiments were performed on a total of n=11 individuals. However, only three
of these had sufficiently high signal-to-noise (SNR); most of them had a low SNR.
Thus, they were not used for this analysis, and the preliminary results and inferences
described below are based on n=3 individuals (with 22 trials, 4 trials and 6 trials
respectively).

3.3 Results

3.3.1 Unilateral Johnston’s organ restriction affects airflow re-
sponse of both antennae

To quantify the extent of set-point modulation by individual JO we unilaterally re-
stricted the left or the right JO in a group of moths. Left/right JO-restricted moths
were tethered and placed in a wind tunnel and presented with windspeeds ranging
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Fig. 3.5 : Effect of unilateral JO-restriction
(A) Antennal angle (baseline subtracted) of the free antenna pooled from both unilateral
restriction treatments. Individual responses of moths are shown in grey, overlaid by the mean
(blue) and the standard error margin (s.e.m; light blue overlay). (B) Antennal angle seen
in control moths (Individuals: grey, mean: black, s.e.m: grey overlay). (C) Box-and-whisker
plots of Spearman’s correlation coefficients (rs) for the free antennal angles from unilateral
restriction and control treatments. (D) Antennal angle of the JO-restricted antenna pooled
from both unilateral restriction treatments (Individuals: grey, mean: blue, s.e.m: light blue
overlay). (E) Antennal angle of restricted antenna seen in bilateral JO restricted moths
(Individuals: grey, mean: red, s.e.m: light red overlay). (F) Box-and-whisker plots of
Spearman’s correlation coefficients (rs) for the restricted antenna from unilateral restriction
and bilateral JO-restricted treatments. The boxes represent the central 50% of the data
around the median (red line). Whiskers indicate 1.5 times the interquartile range. Individual
data points are additionally shown as black spheres. Statistically different groups are shown
by an asterisk (Mann-Whitney ranksum test, p < 0.01).

72



JO mediated set-point modulation

from 0m s−1 to 5m s−1. The antennal responses of these moths were filmed using two
high-speed cameras at 100 fps (Figure 2.1A, see section 3.2). The behavioral responses
of these moths were compared with control moths and moths in which both JO were
restricted (data from chapter 2).
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Fig. 3.6 : Antennal angles of control and JO-restriction treatments
(A) left, (B) right and (C) inter-antennal angle for (i) left) (ii) right (iii) both JO-
restricted and (iv) control moths. The dark line represents the mean, with the light overlay
representing the standard error margin. Only five moths are shown out of a sample of 21,
20, 9 and 9 for the respective treatments (rest shown in Figure B.8, Figure B.9).

Because the antennal positioning reflex is ipsilateral (chapter 2; Krishnan et al. (2012);
Sant and Sane (2018)) and because the primary JO afferents only extend into the
ipsilateral AMMC (Sant and Sane, 2018), we hypothesized that the sensory inputs
from JO that modulate this reflex should also be ipsilateral. Unilateral JO restriction
should only alter the airflow response of the restricted antenna, leaving the response
of the unrestricted one unaffected.
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To test this, we computed the left and right antennal angles from moths for all treat-
ments (Figure 2.1B). From this, we quantified the change in antennal angle of individual
antennae at different airflows. The change was measured with respect to the angle of
the antenna in still air (0m s−1). This avoided confounding effects due to the natu-
ral differences seen in the initial antennal position among moths. Spearman’s rank
correlation coefficient, a measure of monotonicity of antennal angles vs airflow (+1/-1
perfect monotonic increase/decrease respectively), was used to compare the observed
angles between different treatments.

Based on the null hypothesis, we expected the free antenna of the unilateral JO-
restricted moths to behave similarly to a control moth. We pooled the data from the
free antennae of both the unilateral treatments, and compared it with controls (Fig-
ure 3.5A,B). The mean antennal angle of the free antenna from these treatments was
significantly different from the control moths (Figure 3.5A-C). Furthermore, analyzing
the unilateral treatments separately did not change this result (Figure B.6, Figure B.7).
Because the free antenna was not experimentally manipulated, this indicates that the
change in behavior was due to restriction of the contralateral JO.
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Fig. 3.7 : Statistical comparisons of restriction and control treatments
Box plots of Spearman’s correlation coefficients (rs) for (A) left antennal angle, (B) right
antennal angle and (C) inter-antennal angle for left (L), right (R) and both (JO) JO-
restricted treatments, and control (C). (a,b,c) represent statistically different groups (Kruskal
Wallis, Nemenyi test, p < 0.01).

Next, we compared the antennal angles from the restricted antennae of the unilateral
restriction treatments with those of the bilaterally restricted ones. Although the mean
antennal angle of the restricted antennae look qualitatively similar to the bilaterally
restricted ones (Figure 3.5D,E, Figure B.6, Figure B.7), the variance in behavior is
significantly larger (Figure 3.5F, Figure B.6, Figure B.7).

To further characterize the effect of unilateral restriction, we compared the antennal
angles of the unilateral and bilateral restriction treatments. The strong decrease in
all three antennal angles seen in control moths is not observed in the unilateral JO-
restricted moths (Figure 3.6, Figure B.8, Figure B.9). Additionally, the correlation
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coefficients of both unilateral and bilateral JO-restricted moths are statistically dif-
ferent from controls (Figure 3.7). However, the variability in unilateral JO-restricted
moths is greater than the bilaterally restricted ones (Figure 3.7). This suggests that
reliable antennal response to airflow requires sensory inputs from both JOs. Hence,
sensory inputs from both JOs likely modulate the set-points of the antennal positioning
reflex of individual antennae.

3.3.2 Sustained high frequency vibrations alter antennal mus-
cle activity

The behavioral data described above suggests that the activity of antennal muscles
of an individual antenna is modulated by both JOs. To examine the influence of
both JOs on antennal muscles, we recorded EMGs from the anterior levator antennal
muscles (ALMs, Kloppenburg et al. (1997); Sant and Sane (2018)) while simultaneously
subjecting both the antennae to controlled displacements (see section 3.2 for details).
We carefully glued all antennal joints except the pedicel-flagellum joint. This allowed
the controlled displacements provided to the antenna to be directly transferred to
the pedicel-flagellum joint, which in turn activated the JO. By recording antennal
muscle activity during controlled antenna movements, we could record the modulation
of muscle activity by the JO.

We first quantified how bilateral activation of the JO affects both the ALMs using
three types of stimuli - an impulse, a step and a chirp (frequency from 0Hz to 150Hz,
see section 3.2). Recorded muscle activity was run through spike sorting algorithms
to extract spikes (Figure 3.4). These were used to compute Gaussian convoluted firing
rate (GCSR), a measure of how the spike rate of muscles changed in response to these
stimuli (Figure 3.4). Multiple rounds of experiments, each with several stimulus trials,
were performed with the same individual to increase the stimulus-response data points
per moth. Each trial was then inspected to ensure that the recording was reliable
(no motion artifacts, changes in SNR, etc.) and then pooled for data analysis (see
section 3.2 for details). Although a total of 11 individual moths were recorded from,
only 3 of them had sufficiently high SNR for spike detection. The preliminary results
shown here are based on this data.

Spike rate of the ALMs did not consistently change in response to step and impulse
stimuli (Figure 3.8, Figure B.10). Two out of the three moths did not respond to the
stimuli, whereas the third one weakly changed its spike-rate (Figure 3.9, Figure B.11).
This was consistent over several different forms of bilateral step and impulse stimuli
(Figure 3.9, Figure B.11), indicating that instantaneous (impulse) or sustained offsets
(step) of the flagellum do not change antennal muscle activity.

When provided with a chirp stimulus, however, the spike rate sharply increased for
high frequency vibrations of the antenna (Figure 3.10), which was consistent across
all three moths (Figure 3.11). Additionally, the frequency regime during which muscle
activity increased remained similar between ascending and descending chirp stimuli
(Figure 3.11). This suggests that sustained high frequency vibrations, such as those
that occur during flight (like wingbeat frequency and its harmonics), maybe sensed by
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Fig. 3.8 : Representative response to a bilateral step
(A) Displacement of left (blue), right (red) antenna respectively. (B) Raster plots of spikes
in left (blue), right (red) anterior levator muscle, respectively. (C) Normalized GCSR of left
(blue), right (red) muscles, respectively. Grey lines represent rates from individual trials, with
median response shown in blue/red. Dashed black line denotes median baseline spike rate
and grey overlay represents three standard deviations around the median.

76



JO mediated set-point modulation

0 1 2 3 4 5 6 7 8
Time (seconds)

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

Right

Left

Right

Left

Right

Left

Right

Left

R
ig

h
t

M
u
s
c
le

 s
p
ik

e
 r

a
te

 

(n
o
rm

a
liz

e
d
) L
e
ft

R
ig

h
t

M
u
s
c
le

 s
p
ik

e
 r

a
te

 

(n
o
rm

a
liz

e
d
) L
e
ft

R
ig

h
t

M
u
s
c
le

 s
p
ik

e
 r

a
te

 

(n
o
rm

a
liz

e
d
) L
e
ft

R
ig

h
t

M
u
s
c
le

 s
p
ik

e
 r

a
te

 

(n
o
rm

a
liz

e
d
) L
e
ft

A

B

C

D

Fig. 3.9 : Muscle activity in response to bilateral step
Four types of step stimuli were given (shown at the top of each panel) - (A) bilateral forward,
(B) bilateral backward, (C) clockwise (left forward, right backward) and (D) anticlockwise
(right forward, left backward). Solid lines denote spike rates that are at least three standard
deviations away from baseline; dotted lines are indistinguishable from baseline (n=3 individ-
uals).
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Fig. 3.10 : Representative response to a bilateral chirp
(A) Frequency increases from 0 Hz to 150 Hz. Blue, red overlay denotes noise around baseline
(three standard deviations). (B) Spike raster for left (blue), right (red) muscles, respectively.
(C) A noticeable increase in spike-rate is visible in both muscles during high frequency
vibrations. Colors correspond to the same entities as in Figure 3.8.
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Fig. 3.11 : Muscle activity in response to bilateral chirp
Two types of chirp were given (shown at the top of each panel) (A) ascending and (B)
descending. Muscle activity significantly changed in response to high frequency vibrations in
both chirp stimuli (n=3). Colors correspond to the same entities as in Figure 3.9.
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the JO and used to modulate antennal position.

3.3.3 Unilateral antennal stimulation bilaterally changes mus-
cle activity

Next, we quantified how unilateral movements of the flagellum (pedicel-flagellum joint)
affects the activity of both the ALMs. When provided with a chirp stimulus to just
one antenna, the spike rate in both the antennal muscles increased (Figure 3.12). This
was consistent across all three moths, and the frequency regime where muscle activity
increased was similar for both ascending and descending chirp stimuli (Figure 3.13).
Hence, it is likely that the vibrations transduced by the JO on one side is sent bilaterally
to both antennae.

On the other hand, unilateral step and impulse stimuli barely changed the spike rates of
either muscle (Figure B.12, Figure B.13). The weak response seen in one of the moths
decreased when the antennae were stimulated unilaterally (Figure B.12, Figure B.13).

All the electrophysiological results are based on a small sample size (n=3 moths, with
multiple trials each), and needs to be increased to provide a conclusive result. However,
these data provide preliminary evidence of bilateral control of antennal muscle activity
by both JOs.

3.4 Discussion
Antennal positioning in insects is an example of a fast yet flexible reflex (Khurana and
Sane (2016); Natesan et al. (2019)). In chapter 2, we showed that this behavior has two
components - one, a fast reflexive action that keeps the antenna at set-point on short
timescales, the other, a slower modulation of the set-point by multisensory cues to keep
the antenna flexible on longer timescales. We also showed that the JO senses airflow
and continually modulates the antennal set-point based on airflow. In this chapter, we
investigated one of the subsystems of the behavior - the set-point modulation circuit
(unpacking the neuromechanical black box, section 1.4).

JOs can potentially modulate the set-point of the antennae in two ways - unilaterally
and bilaterally. In the unilateral case, each JO senses the deflection due to airflow
and uses it to modulate the position of the corresponding antenna. This would make
individual antennae independent not just with respect to maintaining antennal position
[chapter 2; Krishnan et al. (2012)], but also with respect to responding to airflow. In
the bilateral case, sensory inputs from both the JOs maybe pooled to determine the
set-point of each antenna.

To test if JO modulates set-point unilaterally, we used airflow-dependent antennal
positioning as a behavioral readout (Figure 2.3A). By unilaterally restricting JOs,
we showed that the antennal response to airflow in the free (unrestricted) antenna
is substantially decreased (Figure 3.5A-C). Furthermore, the JO-restricted antennae
weakly respond to airflow as well (Figure 3.5D-F). This provides evidence against
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Fig. 3.12 : Representative response to a unilateral chirp
(A) Left antenna frequency increases from 0 Hz to 150 Hz (top x-axis). (B) Spike raster for
left (blue), right (red) muscles, respectively. (C) A noticeable increase in spike-rate visible in
both muscles during high frequency vibrations of the left pedicel-flagellum joint, suggesting
bilateral transfer of information from the left JO. Colors correspond to the same entities as
in Figure 3.8.
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Fig. 3.13 : Muscle activity in response to unilateral chirp
Muscle activity changed bilaterally in response to both ascending and descending unilateral
chirp (n=3 individuals). Colors correspond to the same entities as in Figure 3.9.
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the hypothesis that set-point is unilaterally modulated and suggests the likelihood of
bilateral pooling of sensory inputs from the JOs.

To capture the mechanism of bilateral pooling, we needed a readout of the set-point
of each antenna. Activity of either the antennal motor neurons or the muscles would
serve as a good proxy of set-point (spiking neuron model in chapter 2). The extrinsic
muscles that move the head-scape joint and position the antennae consist of five muscles
innervated by atleast seven motor neurons (Kloppenburg et al., 1997; Sant and Sane,
2018). We recorded simultaneously from both the ALMs, one of the larger muscles out
of the five extrinsic muscles (Kloppenburg et al., 1997; Sant and Sane, 2018). We chose
these muscles both due to their size as well as the ease of accessibility. Next, we custom
designed our stimulus setup (based on Mohan et al., 2017) to allow us to move the
flagellum of each antenna independently and in a controlled manner. By restricting all
antennal joints except the pedicel-flagellum joint, we tried to ensure that movements
of the flagellum activated only the JO. Hence, our setup enabled us to simultaneously
stimulate both the JOs while recording the activity of both the ALMs.

JO has been shown to sense flagellar vibrations over a wide range of frequencies, ranging
from low frequency movements arising due to airflow and gravity to high-frequency
movements to due wingbeat and inertia forces during flight (Dieudonné et al., 2014;
Kamikouchi et al., 2009; Mamiya and Dickinson, 2015; Sane et al., 2007; Yorozu et al.,
2009). Based on these studies, we hypothesized that airflow is sensed by the JO as
sustained displacements of the flagellum. To test this, we provided step stimuli to
both flagella while recording antennal muscle activity. Surprisingly, the step stimuli
did not evoke a consistent change in activity of either muscle (Figure 3.8). Chirp
stimuli, on the other hand, evoked a strong increase in firing rate in both muscles
(Figure 3.10). This suggests that, in hawkmoths, airflow-dependent modulation by
the JO likely utilizes characteristics of high-frequency vibrations and not sustained
(low-frequency) displacements of the flagellum. This is in contrast to observations in
fruitflies, where airflow detection arises from sustained displacements detected by the
JO (Yorozu et al., 2009).

Next, we stimulated only one of the flagella while recording from both the antennal
muscles. Whereas unilateral step and impulse stimuli did not change the firing rate of
both muscles, unilateral chirp stimulus increased the firing rate of both ALMs. These
results are preliminary as we have only few sample points at present. Increasing the
sample size by performing more experiments or using better spike detection techniques,
such as template-matching and deconvolution (Clements and Bekkers, 1997; Lewicki,
1998; Pernía-Andrade et al., 2012), on the low SNR dataset would provide more con-
clusive evidence for bilateral pooling.

Bilateral pooling of flagellar vibrations sensed by the JOs has been observed in different
brain regions of insects (Homberg, 1985; Patella and Wilson, 2018; Ritzmann et al.,
2008; Suver et al., 2019). In cockroaches and bees, the neurons in the central complex
respond to mechanical stimuli from both antennae, often responding to other modalities
as well (Homberg, 1985; Ritzmann et al., 2008). In fruitflies, sensory inputs from the
ipsilateral JO forms a coarse tonotopic map in the corresponding AMMC (Patella and
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Wilson, 2018). Feedback from these ipsilateral tonotopic maps are carried downstream
from the AMMC to the wedge regions of the fruitfly brain where they combine to form
fine, bilateral tonotopic maps (Patella and Wilson, 2018). These wedge projection
neurons integrate information from both the antennae to generate a linear response
to wind direction (Suver et al., 2019). Such neurons could provide feedback to the
AMMC and modulate set-point, giving rise to airflow-dependent antennal positioning.

Modification of antennal set-point occurs via modulation of antennal motor neuron
activity at the AMMC (chapter 2). Therefore, the airflow information, along with other
inputs from modalities such as vision and odor, must eventually modulate activity
of antennal motor neurons (chapter 1). Apart from this, antennal mechanosensory
information is important for control of flight, abdominal flexion and leg movements
[modularity of sensory systems, chapter 1; Budick et al. (2007); Cowan et al. (2006);
Dürr et al. (2001); Hinterwirth and Daniel (2010); Sane et al. (2007); Staudacher
et al. (2005); Taylor et al. (2013)]. The AMMC thus merits further investigation
to understand state-modulated antennal movements and the role of the antennae in
controlling insect behavior in different contexts.
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Chapter 4

Modeling Böhm’s bristle sensitivity
to antennal movements

4.1 Introduction
Control and proper execution of fast behaviors, such as flight in insects, require propri-
oceptive feedback on short timescales (Dickinson, 1999; Sane et al., 2007). In addition
to being fast, this feedback needs to be precise, which often requires the noise to be
pre-filtered from the signal by the physical structure of the sensor. Mechanosensors,
such as campaniform sensillae on halteres, have varied geometric and material proper-
ties, allowing them to specifically amplify and detect certain types of cuticular strains
(Sane and McHenry, 2009). Such biomechanical filtering enables them to achieve both
speed and precision (chapter 1).

As described in the previous chapters, insects rely heavily on mechanosensory hair
plates for proprioceptive information. These hair plates are found on the active joints
of several body parts including the antennae (Böhm, 1911; Schneider, 1964; Toh, 1981),
neck (Haskell, 1959; Liske, 1982; Thurm, 1963) and legs (Cruse et al., 1984; Kuenzi
and Burrows, 1995). In each of these cases, ablating the hair plates severely affects
positioning of the respective appendage (Cruse et al., 1984; Krishnan et al., 2012;
Mittelstaedt, 1962). Proprioceptive feedback from the hair plates is therefore critical
for stable positioning of these appendages.

Mechanosensory hair plates are organized as fields of bristles which sense proprioceptive
information. Biomechanical filtering in individual mechanosensory hairs has been well
studied. For instance, ease of stimulation of an individual mechanosensory hair depends
on the length of the hair, with longer hairs being more sensitive, i.e. they are stimulated
by smaller torques (Camhi, 1969, 1980). Additionally, hairs with hardened cuticular
distortions at the base bend preferentially in one direction, making them directionally
sensitive (Thurm, 1965, 1963). Although the filtering properties of individual hairs
are known, the mechanisms by which collections of such hairs can selectively filter
information are not well understood.
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4.2. Methods

Here, we investigate how Böhm’s bristles transform antennal position into propriocep-
tive feedback that encodes position. By virtue of the mechanical properties of the joint
and location of the hair plates, antennal movements undergo a first level of biome-
chanical filtering (Sane and McHenry, 2009). Compounded onto this are the filtering
properties of individual sensory bristles (Sane and McHenry, 2009). The propriocep-
tive feedback provided by these hair plates therefore encompasses both these levels of
filtering (chapter 2). Additionally, the nature of this transformation dictates the type
of control the neural system has to exert to dictate antennal movements (chapter 1).
Presumably, the proprioceptive inputs from the head and legs also undergo similar
transformations before being used by the respective neural systems to control move-
ments (chapter 1), making them quite important for understanding insect behavior.

In this chapter, we create a computational toolbox to investigate the biomechanical
filtering properties of hair plates. By developing a numerical method to determine
stimulation of a hair plate, we determine the sensitivity of an arbitrarily shaped bristle
field. By using simple biomechanical models, we then quantify the effect of hair plate
location on movement sensitivity. Together, the toolbox presented here could be used
to describe the input-output transformation of the hair plate mechanosensory system
(chapter 1, chapter 2) and to understand their roles in proprioception.

4.2 Methods

4.2.1 Assumptions
The biomechanical model presented here aims to quantify the stimulation of hair plates
as a function of both antennal movements, and the shape and position of the hair plates.
To simplify the model, we assumed the following:

1. Stimulation of sensory hairs is binary. When there is relative movement between
basal antennal joints between head capsule-scape and scape-pedicel, the sensory
bristles are covered by cuticular edge and thus stimulated (Figure 4.1A). We
assume that a sensory bristle is completely active when it is covered by the
cuticular edge at the joint, and not active when it is exposed. This is based
on experimental data that suggests that the clearance between the cuticle and
the base of the sensory bristle is very small [Figure 4.1B; Pringle (1938); Thurm
(1963); Krishnan et al. (2012); Sant and Sane (2018)]. Therefore, once the bristle
is covered by the cuticle, it invariably bends and is stimulated (Figure 4.1C).

2. Density of bristles within a field is uniform. This assumption allows us to relate
the area stimulated by the cuticular edge instead of counting the number of
bristles at a particular position. To obtain the number of stimulated bristles, we
multiplied the stimulated area with the density and rounded it off to the nearest
integer less than the obtained fraction (based on assumption 1).

3. Hair plates are two dimensional structures. Because the hair plates are structures
on the surface of the antenna (or other joints), their shape is automatically two-
dimensional. Variations in heights of bristles may arise from surface contortions
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Fig. 4.1 : Antennal hair fields and their stimulation
(A) Each moth antenna has three fields of Böhm’s bristles on the scape (two shown, one
hidden from view) and two fields on the pedicel (one shown). The scape has two degrees
of freedom whereas the pedicel has just one (directions illustrated). (B) SEM image of a
pedicel bristle field stimulated by the cuticular edge (image credit: Harshada Sant). The
movement of the pedicel with respect to the cuticular edge is shown by a brown arrow.
Bristles stimulated by the edge is shown by a red arrow. (C) An illustration of how Böhm’s
bristles are stimulated by the cuticular edge.
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of the antenna, or due to different bristle heights. Based on experimental data,
we assume individual sensory bristles to have the same height (Krishnan et al.,
2012; Sant and Sane, 2018).

4.2.2 Calculating hair field stimulation
Methodology

Hair plates of different insects have diverse shapes ranging from circular /elliptical
fields to sparse, widely distributed fields (Krishnan et al., 2012; Kuenzi and Burrows,
1995; Pringle, 1938; Thurm, 1963; Wong and Pearson, 1976; Sant and Sane, 2019). We
therefore could not assume hair plates to have a simple circular geometry. Instead, our
methodology was designed to determine the stimulation of a bristle irrespective of the
hair field shape, as described below.

F (t) = (X(t), Y (t)), t ∈ [a, b] [4.1]
F : [a, b] → R2

where,
F (t) = parametric representation of the hair field
X(t) = spline representation of the x-coordinate
Y (t) = spline representation of the y-coordinate
[a, b] = interval over which the splines are defined

To parameterize an arbitrarily shaped hair field (example - Figure 4.2A), we used B-
splines (Equation 4.1), which are a class of piecewise polynomial functions that can be
used to represent smooth shapes. B-splines are basis functions in the spline function
space, thereby giving them the capability to represent any spline function. Addi-
tionally, they are differentiable and continuous over the defining points, and are zero
outside this defined region (Equation 4.1). This is useful as integrating/differentiating
a particular spine outside the defined region is automatically zero. Thus, they are ideal
for parameterizing the shape of hair fields, because they can represent any shape and
yet be continuous and differentiable over the whole shape.

A =

∮
Y dX =

∮
X dY

=

∫ b

a

Y (t)
d
dt
(
X(t)

)
dt [4.2]

where,
A = area enclosed by a closed shape

(defined by X,Y; parameterized by Equation 4.1)
[a, b] = interval over which the splines are defined
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We used the curve fitting toolbox of MATLAB (Mathworks, Natick, MA, USA) to
write custom codes to represent and calculate the stimulated area of a particular hair
field. We assumed the hair plates to be two dimensional (assumption 3), and used B-
splines to parameterize the X and Y coordinates of the hair plates (Equation 4.1). The
cuticular edge was also assumed to be two dimensional and represented in a similar
fashion. Hair fields were defined as closed structures, and could take any arbitrary
shape (Figure 4.2A).

The cuticle border that stimulated the bristles was an open edge that intersected with
the hair-field at multiple points, forming intact and stimulated regions (Figure 4.2A).
Note that the method works even for shapes with contours (Figure 4.2A), making it
suitable for finding the sensitivity of any generic hair plate. To compute the area, each
of these intersection regions were first converted to closed B-splines. The regions were
then classified as active or inactive based on which side of the cuticle edge they lay.
The areas of each of these regions were computed using Equation 4.2 (Figure 4.2B).
This was then multiplied with the density of hair plates to obtain the number of
stimulated bristles. Sensitivity to movements was computed as changes in area per
step in movement (Figure 4.2B).

Validation

To validate our methodology, we used circular and elliptical hair fields. We simpli-
fied the cuticular edge to a line and used it to stimulate the hair field at different
positions. In parallel, we analytically calculated the area for each of the different po-
sitions. The methodology described above was shown to be accurate, with the area of
the intersected region identical to the one obtained analytically (circular-Figure C.1;
elliptical-Figure C.2).

4.2.3 Simulation of hair plate stimulation due to appendage
movement

Hair plate stimulation involves rotation and translation of the cuticle, which occur
together when an appendage moves. To accurately model the hair plate stimulation
we would have to model both the joint and the location of the hair plate on the joint.
To weave in and out of the cuticular edge, the hair plate has to lie on a roughly spherical
surface. The whole joint movement could be described as rotation on a pivot point,
which lies inside the joint. By combining the two, we reasoned that the dynamics of the
hair plate on a complex joint would resemble a spherical one whose center is the pivot
point and whose hair plates are positioned on a sphere similar to the real joint, i.e. at
same distances from the pivot point. We therefore simplified the model by modeling
the whole joint as a sphere whose center was the pivot point of the joint, with the hair
plate and cuticle lying on the sphere (Figure 4.5). The cuticle remained stationary
while the hair plates moved in and out of the cuticle, as seen in real joints (Figure 4.1).

Next, we needed a way to describe the rotation of the sphere as translation and rotation
of the cuticle surface. For points lying on the sphere, rotation of the joint is essentially
addition or subtraction of a constant to their existing azimuth and elevation values.
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Because both the hair plates and cuticle lie on the sphere, we represented them using
azimuth and elevation. This made easy the calculation of new positions on the hair
plates during every rotation. This also simplified the area calculation because the
splines represented using azimuth and elevation are essentially 2D splines.

Using methods like micro-computed tomography (micro-CT) would allow us to obtain
the location of hair fields, and the corresponding cuticular edge, in spherical coordi-
nates with respect to the joint. For the purposes of this chapter, we used hair field
shapes obtained from scanning electron microscopy (SEM) images. They were there-
fore converted from distance (in pixels) into azimuth and elevation values. Because
azimuth covers a smaller circumference (distance) near the poles and a larger circum-
ference near the equator, an arc of equal length would have a smaller azimuth difference
near the equator and a larger difference near the poles. We avoided this location based
inflation/deflation of the field by normalizing the azimuth to elevation. This allowed
us to place the same field at different elevations and compare their sensitivities. Note
that the normalization does not effect the stimulated region, which is simply the ratio
of area stimulated to total area. Additionally, this step will not be necessary when the
data is generated from 3D meshes (like micro-CT data).

Using this approach, we can place the hair plate at various azimuths and elevations on
a joint, and characterize its sensitivity to different movements of appendages.

4.3 Results

4.3.1 Effect of hair plate shape on movement sensitivity
We first looked at how shape of a hair plate affects its sensitivity to movements. Two
commonly seen hair plate shapes were studied - elliptical and circular. Using the
numerical approach (B-splines, see section 4.2), we simulated the stimulation of such
hair plates. We used a simple line to represent the cuticular edge, and varied the slopes
of this line to obtain sensitivity of the hair plate to movements in different directions
(Figure 4.3A).

We found that elliptical hair plates provide either high range or high sensitivity. Di-
rections of movement parallel to the minor axis of the ellipse provided the most range,
i.e. movements over a large displacements were detected best by the hair plates (Fig-
ure 4.3B). The sensitivity to small movements were, however, low (Figure 4.3C). Di-
rections of movement parallel to the major axis provided low range (Figure 4.3B) but
the hair plates were highly sensitive to small movements in the stimulation range (Fig-
ure 4.3C). This trade-off between sensitivity and range increased with the eccentricity
of the ellipse.

Next, we looked at the sensitivity of pedicellar Böhm’s bristles of antennae from the
Oleander hawkmoth, Daphnis nerii. We extracted both the shape of the field as well as
the cuticular edge from an SEM image (Figure 4.4A-B). The field was roughly circular
in nature (Figure 4.4A-B) and had symmetric range and sensitivity for different angles
of movements (Figure 4.4C). For the same area, a circular field provided symmetric
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(A) Sensitivity of elliptical fields were computed using a simple line for the cuticular edge.
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directions of movement. (B) Area of the hair plate stimulated by the cuticle (line). (C)
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the cuticular edge. The center of the field is shown by a black filled circle.
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Fig. 4.4 : Sensitivity of pedicellar bristle fields
(A) The shape of the bristle field and the cuticular edge was obtained from an SEM image
(credit: Harshada Sant). (B) Pedicellar bristle field and the corresponding cuticular edge
extracted from the SEM (bristle field center marked by black filled circle). (C) Sensitivity of
the bristle field to different directions of stimulation by the cuticular edge.
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range and sensitivity (Figure 4.4C, Figure C.1), although both were lower than the
range and sensitivity provided by elliptical fields in different (asymmetric) directions.

4.3.2 Effect of hair plate location on movement sensitivity
How do changes in the location of the same hair plate, i.e. its position on the antenna,
change its sensitivity? To answer this, we made a spherical ball-and-stick model of
the antenna (Figure 4.5). It had two degrees of freedom, one along the x-axis (pitch,
Figure 4.5A) and the other along the y-axis (roll, Figure 4.5B). We placed the pedicellar
bristle field at different elevations of the spherical antenna and simulated antennal
movements along the pitch and the roll axis (Figure 4.5A-B).

For the same azimuth, placing the bristle field at different elevations had a stark effect
on its stimulation (Figure 4.5C-E). At zero elevation, i.e. the equator, the bristle field
responded strongly to movements along one axis and not the other (Figure 4.5C).
As the elevation of the field decreased, it began to respond to both types of rotation
(Figure 4.5D,E). Selective sensitivity to particular rotations of the antenna could only
occur if the bristle field was placed at the equator of the joint - locations further away
resulted in easy detection of presence or absence of movement but lack of sensitivity
regarding the degree of rotation. Hence, the sensitivity of a hair plate to different
movements is dependent not just on its shape, but also on its location on the joint.

4.4 Discussion
Reflexive behaviors such as antennal positioning rely on rapid proprioceptive feedback
from mechanosensory structures like the Böhm’s bristles (chapter 2). Böhm’s bristles,
and hair plates in general, consist of a collection of individual mechanosensory hairs,
each responding to deflections (Böhm, 1911; Thurm, 1965). Proprioceptive feedback
sent to the brain depends both on the properties of the hair, and also the biomechanical
filtering due to the properties of the joint and location of the bristle fields. The brain
uses this filtered information to infer antennal position and control antennal move-
ments, via activation of antennal motor neurons and muscles (chapter 1; chapter 2).

In the pedicel, control of movements requires pooling information from two sets of bris-
tle fields to stimulate two pairs of muscles. One possible neural circuit is conceptualized
in chapter 2, where the pooled activity of one bristle field stimulates one of the muscle
pairs. The bristle field to muscle connectivity encodes negative feedback; stimulation
of the bristle field increases the activity of the pair of muscles that move the pedicel in
the direction of decreasing bristle field stimulation (chapter 2).Because the pedicel has
just one degree of freedom of movement, with two pairs of bristles and muscles to sense
and actuate respectively, such one-to-one connectivity is possible. The scape, on the
other hand, has two degrees of freedom, with three sets of bristle fields and five pairs of
muscles sensing and controlling its movement, respectively (Kloppenburg et al., 1997;
Sant and Sane, 2018). Stimulation of these bristle fields depends both on the location
of the field as well as its shape, which are different for the three fields. Characterizing
the hair plate mechanosensory system, i.e. how position translates to stimulation of
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Fig. 4.5 : Location dependent changes in sensitivity
To simulate the effect on location on sensitivity to antennal movements, we used a simple
ball-and-stick model of the antenna. The antenna was moved along its two degrees of
freedom - (A) pitch and (B) roll. The fields were placed at a constant azimuth of 0°,
whereas the elevations were (C) 0°, (D) −22.5° and (E) −45° respectively. The stimulated
area of the hair plate due to small movements in each axis depends strongly on the elevation
of the hair plate.
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these fields, is therefore a prerequisite to understanding how the underlying neural
system estimates position (chapter 1).

In this chapter, we have developed a set of tools to describe the input-output transfor-
mation of the hair fields (chapter 1). We used these tools to characterize the sensitivity
of arbitrarily shaped hair plates to different types of movements. The first tool was
a method to compute the stimulated area of such a bristle field. By modeling the
cuticular edge as an open curve, we could compute the area stimulated for different
positions of the cuticle. The second tool provided a method of placing these bristle
fields on biomechanical models of antenna and simulating the stimulation of these fields
as a result of the movements of the antenna. We then used these tools to understand
the role of shape and location of a hair field in determining their sensitivity to small
movements.

Starting with simple linear motion (one degree of freedom), we investigated the contri-
bution of shape to sensitivity. We found that circular hair fields, such as the pedicellar
Böhm’s bristles, had symmetric range and sensitivity. Irrespective of direction of stim-
ulation, these hair plates showed equal sensitivity for the same range of movements.
On the other hand, elliptical hair plates had a maximum range for movements par-
allel to the minor axis and maximum sensitivity for movements parallel to the major
axis. This informational asymmetry allowed them to preferentially pick one direction
of movements.

Next, we looked at the effect of location on sensitivity to movements along two degrees
of freedom. Detection of movements along either axis was easier when the fields were
located away from the equator of a ball-and-stick joint. However, decoupling the
movements along the axis was harder the farther away a field was from the equator.
Fields right on the equator, on the other hand, were sensitive to movements along only
one particular axis, making it easier to decouple different types of rotations.

Hence, we inferred that both shape and location have strong effects on sensitivity to
different types of movements - certain locations or shapes can biomechanically filter
particular types of movements, making it easier for the nervous system to pool informa-
tion and determine position. Identifying these in insect hair plates might enable us to
better understand the types of information sensed by these mechanosensory structures.

The methods used are general purpose and can be applied to a variety of data types.
Data generated from techniques like X-ray tomography (micro-CT) would yield the
most information, allowing one to digitize not just the shape of the field, but also
its location with respect to the 3D mesh of the complete joint (Flannery et al., 1987;
Friedrich and Beutel, 2008). Biomechanical models based on these data will provide
accurate simulations of joint movement and stimulation of hair plates as a result of this
movement. These simulations can be validated by comparing the predicted stimulations
with hair plate stimulations observed in experiments.

The morphology of hair plates seen in insects is highly varied. Antennal hair plates
themselves display several different morphologies for diverse insect orders, ranging from
the uniform fields seen in honeybees to sparse fields seen in cockroaches and moths
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(Sant and Sane, 2019). A toolbox, such as the one described in this chapter, would
help generate predictions of how these fields affect sensory encoding and test them with
experiments.

For sensory structures like the hair plates, it is experimentally challenging to precisely
stimulate a subset of these hair plates while simultaneously recording its response.
However, movements performed during behaviors will reliably and consistently stimu-
late subsets of individual hair plates. To understand the neural basis of such rapid re-
flexes, the stimulation of these bristles needs to be computed in real time and compared
with the response of the nervous system (chapter 1). The computational framework
used here can be used to formalize such biomechanical processes.
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Appendix A

Supplementary data for Chapter 2

�

The experiment and simulation data relevant for this chapter is saved in the NCBS
data servers.1

All the codes used to analyze the data have been uploaded onto Github. Here are a
list of the repositories contain codes used in this chapter:

1. Autotracker used to track the antenna.2

2. Analysis of experiment data, fitting control theoretic models and simulating the
network model.3

3. Statistical analysis.4

4. Scatter plots.5

1smb://storage.ncbs.res.in/dinesh/Archived%20Projects/2019-Antenna-paper-1
2https://github.com/AbstractGeek/Score-Based-Autotracker
3https://github.com/AbstractGeek/publication-supplementaries
4https://github.com/AbstractGeek/non-parametric-tests-toolbox
5https://github.com/AbstractGeek/CategoricalScatterplot
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Fig. A.1 : Images of experiment manipulations

(A) Magnetic tether. Magnet was attached on the dorsal surface of the thorax. (B)
Descaled antenna base. The antennae were carefully descaled ensuring that none of
the antennal hair plates were damaged. (C-D) Sham-treated moths. (C) Before and
(D) after the glue was applied to the third/fourth annulus. (E-F) JO-restricted

moths. (E) Before and (F) after the pedicel-flagellar joint was glued.
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Fig. A.2 : Airflow-dependent antennal positioning

(A-C) Raw IAA without baseline shifting. (D-F) Sensitivity to airflow in control,
sham-treated moths were correlated (ρ=0.70). JO-restricted moths were not

correlated to control (ρ=-0.21), sham (ρ=-0.09) or airflow (ρ=0.04). (G-I) IAA
changes in control, sham-treated moths reduced slope of Tγ for increases in airflow, in
comparison to JO-restricted moths. However, Tγ increased for all treatments (Slopes
from linear fits (adj R2) for control: 45°, sham: 47°, JO-restricted: 62°. (J) IAA for
no airflow (not statistically different; KW-test, p=0.78). Mean + standard deviation

shown as dark line, overlay (individuals denoted by light lines).
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Fig. A.3 : Model fits and predictions of antennal response

(A-D) JO-restricted moth dataset. (A) All models, (B) Integral model fits for a
representative dataset. (C-D) Goodness-of-fit (n=72 trajectories; median R2 - P:
-0.13, I: 0.54, PI: 0.53, PD: 0.62, II: 0.45, PID: 0.50; median nAIC - P: 3.26, I: 2.04,
PI: 2.13, PD: 1.98, II: 2.36, PID: 2.11). (E-F) Goodness-of-fit for control moth

predictions (n=133; median R2 - P: -0.62, I: 0.76, PI: 0.76, PD: 0.74, II: 0.61, PID:
0.75; median nAIC - P: 3.76, I: 1.75, PI: 1.82, PD: 1.73, II:2.38, PID: 1.72). (G)
Integral model predictions for a representative dataset. (H-I) Goodness-of-fit for
predictions (n=72; median R2 - P: -0.42, I: 0.39, PI: 0.33, PD: 0.33, II:0.42, PID:

0.45; median nAIC - P: 3.58, I: 2.27, PI: 2.28, PD: 2.29, II: 2.37, PID: 2.25). Kruskal
Wallis, Nemenyi test (p<0.01) was used to test statistical significance (a, b, c

represent statistically different groups).
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Fig. A.4 : Integral model predictions for neural circuit simulation

(A-B) Set-points of neural circuit simulation. Interneuron activity (A) modulated
the set-point of the simulated neural circuit, which was (B) robustly kept constant

regardless of the amplitude of perturbations. (C) Goodness-of-fit for model
predictions for all the models (Kruskal Wallis, Nemenyi test, p<0.01; n=100

trajectories; median nAIC - P: 5.51, I: 0.95, PI: 0.96, PD: -1.34, II: 4.29, PID: -1.84).
(D-F) Model predictions for neural circuit simulation. (D) Integral model

predictions for a representative dataset from the simulated neural circuit. (E-F)
Goodness-of-fit for model predictions for all the models (Kruskal Wallis, Nemenyi

test, p<0.01; n=100 trajectories; median R2 – P: -1.23, I: 0.97, PI: 0.97, PD: 0.94, II:
0.94, PID: 1.00; median nAIC - P: 5.50, I: 1.16, PI: 1.16, PD: 1.71, II: 2.05, PID:

-0.81)
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Fig. A.5 : Head rotations during electromagnet perturbations.

(A) Pitch, (B) Roll and (C) Yaw of the head. Grey boxes indicate electromagnet
“on”. The moth rotated its head slightly in response to left antenna perturbation, but
because of the head-centric-system, (D) the right antennal angle (internal control,

blue) did not change. The left antennal angle (red) changed as expected.
Distributions of (E) Pitch, (F) Roll and (G) Yaw in all experiments.
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Fig. A.6 : Estimating electromagnet release delays

(A-B) Filtering of raw antennal angle and estimating release point. (A) Raw
antennal angle (yellow) was filtered by estimating and subtracting wing beat

frequencies [green, see methods, akin to using a notch filter (dotted purple line)].
Release point was estimated as point where the antenna crossed 25% of the difference

between perturbed and final settled angles (set-point). Delay depended on many
factors: distance of electromagnet, differences in antennal inertia, etc. and was (B)

centered around 50ms for both control and JO-restricted moths. (C-D)
Characterization of the electromagnet. On-off delay was characterized by measuring
the magnetic fields using a Hall effect sensor (DRV5053). The electromagnet was
placed 2 cm from the sensor, roughly the same distance as for the antenna. (C)

Normalized voltage inputs to the electromagnet (black) and measured voltage output
from Hall effect sensor (purple). On- (red overlay) and off-delay (blue overlay) were
computed as time taken for magnetic fields to stabilize to 99% CI of the mean on and
off voltages, respectively. (D) Box plot of on- and off-delays of both electromagnets

used (median: E1- 117.1ms on, 77.0ms off; E2- 107ms on, 72.3ms off; overall
median: 113.3ms on, 76.1ms off).
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Fig. A.7 : Raw data traces of antennal response to perturbation

(A-B) Fully digitized data of control (n=4) and JO-restricted (n=2) moth trials.
Color indicates airflow (light traces -individuals; dark - average response). Note that

right antennal angle is typically constant and unaffected by left antennal
perturbations. (C-D) Remaining data set [Control(n=7), JO-restricted(n=4)]. Only
frames 100ms before and 500ms after perturbation was digitized as it was sufficient

to characterize the response (see Methods).
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Supplementary data for Chapter 3

B.1 Calibration of stimulus setup

B.1.1 Hall effect sensor calibration
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Fig. B.1 : Hall effect sensor calibration

Sensor-magnet pairs were calibrated by moving the magnet at steps of 0.1mm away
from the sensor. Average voltage output for individual distances for (A) left and

(B) right sensor is shown as filled circles. Equation [B.1] was fit to the data for both
the sensors; the fit output is shown are blue and red line respectively. Using the fitted
constants, Equation [B.2] was used to calculate distance between the magnet and

sensor from output voltage.
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Hall effect sensors were used to measure the movement of the antenna during the pre-
sentation of a stimulus. A neodymium magnet attached to the end capillary generated
changes in the magnetic field that were measured by the Hall effect sensor. The mag-
netic field at the Hall effect sensor, due to the neodymium magnet, is proportional
to the inverse cubed distance between them (equation [B.1]). This can be used to
back calculate the distance when the voltage at the sensor is known (equation [B.2]).
However, due to differences in both the sensors and the magnets, the constants in
the equation can vary. Therefore, we calibrated every sensor-magnet pair before using
them to back calculate distance from voltage.

V = a+
b

(x+ c)3
, [B.1]

where,
V = Voltage output of the Hall effect sensor,
x = distance of the magnet from the sensor,

a, b, c = free parameters (fit to the calibration data)

For every sensor-magnet pair, we moved the magnet away from the sensor at steps of
0.1mm using a micromanipulator (Figure B.1) (Narishige). At every step, the voltage
output of the Hall effect sensor was acquired for one second using the DAQ. The free
parameters in equation [B.1] were fit to the average voltage at every distance step using
the curve fitting toolbox in MATLAB. The fitted equations for all the sensor-magnet
pairs had adjusted R2 > 0.99 (Figure B.1). Using the fitted parameters and equation
[B.2] the distance of the capillary from the Hall effect sensor was computed from the
voltage output of the sensor. Changes in distance when the stimulus was presented
was later computed from this.

X = 3

√
b

V − a
− c, [B.2]

where,
x = distance of the magnet from the sensor,
V = Voltage output of the Hall effect sensor,

a, b, c = parameters fitted to calibration data

B.1.2 Stimulus calibration
The sub-woofer based stimulus setup described above did not provide linear movement
along all frequency and amplitude ranges. Both sub-woofers had a resonance close to
35Hz and a fall off after 50Hz (Bode plot, Figure B.2). Each of the provided stimuli
were therefore calibrated to ensure that the desired output was achieved. All the
calibration was done in MATLAB using custom written codes.
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Fig. B.2 : Frequency response of stimulus speakers

Bode plot illustrating the frequency response of left and right speakers. (A) and (B)
show the gain (magnitude) and the phase of the output w.r.t to the input frequency.
Both speakers show a resonance peak close to 35Hz, after which the gain drops.
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Step stimulus

The sub-woofer based stimulus setup did not provide linear displacement output for in-
put voltage (Figure B.3A,B). To provide steps of varying amplitude, we had to calibrate
the input voltage - output displacement relationship. To do this, we first ran a train of
steps with varying input amplitude on both the speakers. The output displacement was
speaker specific and were different for the left and the right speaker.(Figure B.3E,F).
However, the input-output relationship for both speakers followed a power law (equa-
tion [B.3]). The free parameters in the equation were therefore fit for both speakers
separately (Figure B.3E,F). Using this fit, the input voltage was computed from the
desired output displacement. The displacement outputs of the calibrated speakers were
very close to the desired outputs (Figure B.3C,D).

V = axb + c; [B.3]
where,

x = desired output displacement in mm,
V = Input voltage to obtain the desired output,

a, b, c = parameters fitted to input-output characteristics of the speaker

Chirp stimulus

To calibrate the chirp, we first computed the frequency dependent gain for each speaker
(bode plot, Figure B.2). This was done using a chirp with peak-to-peak amplitude of
0.4V Figure B.4A,B). The inverse of this gain was used to find the amplitude for every
frequency in the chirp. However, due to the non-linearity of the speaker, we were
unable to generate a constant displacement output at the very first pass of calibration.
Instead, we started from a constant amplitude input and ran multiple calibration passes
(generally five). At each pass, we successively multiplied the input with the inverse
of the output amplitude obtained at every frequency. This iterative multiplication
molded the input to produce the desired output chirp (Figure B.4C). The final speaker
input was a multiplication of the constant amplitude input with the inverse amplitudes
from all steps (Figure B.4C,D). This gave rise to the desired peak to peak amplitude
of 0.1mm (Figure B.4E,F).
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Fig. B.3 : Step stimulus calibration

Output displacement for provided input voltage was not linear for (A) left and (B)
right speakers. To ensure that desired output was provided, we calibrated both the
speakers (C), (D) respectively. Using a train of different voltage amplitudes, we

obtained the input-output relationship of the speaker (grey filled circles in (E), (F)).
Calibration was performed for each speaker by fitting a power law (Equation [B.3])
for this data (colored lines, (E), (F)). The input voltage for a desired amplitude was

obtained from this fit.
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Fig. B.4 : Chirp stimulus calibration

Output displacement of (A) left and (B) right for a constant input amplitude
(peak-to-peak) of 0.4V. (C), (D) Inverse input computed from multiple calibration

passes. This generated a desired peak to peak output displacement of approx.
0.1mm in both the (E) left and (F) right speaker.
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B.2 Supplementary data
The behavior and EMG experiment data relevant for this chapter is saved in the NCBS
data servers (behavior data1; EMG data2).

All the codes used to analyze the data have been uploaded onto Github. Here are a
list of the repositories contain codes used in this chapter:

1. GUI for data acquisition from NI DAQ.3

2. Analysis of behavior data, stimulus delivery for EMG experiments and analysis
of EMG data.4

3. Statistical analysis.5

4. Scatter plots.6

1smb://storage.ncbs.res.in/dinesh/Archived%20Projects/2019-Antenna-paper-1
2smb://storage.ncbs.res.in/dinesh/Archived%20Projects/2019-Antenna-paper-2
3https://github.com/AbstractGeek/ni-daq-acquisition-matlab
4https://github.com/AbstractGeek/publication-supplementaries
5https://github.com/AbstractGeek/non-parametric-tests-toolbox
6https://github.com/AbstractGeek/CategoricalScatterplot
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A B

C D

Fig. B.5 : Images of experiment setup

(A) Windows cut behind the antenna to access the antennal anterior levator muscles
(ALM). (B) The region where the window is cut has very few hemolymph vessels and
proboscis muscles, making it a simple and less invasive procedure. (C) Complete
setup to deliver antennal vibrations using subwoofers and record activity of the

muscles. D Closeup view of the moth, with its antennae stimulated by the capillaries
and tungsten electrodes recording from both the antennal anterior levator muscles.
The neodymium magnets on the capillary allow the antennal stimulation to be

captured by the Hall effect sensor in front of it.
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Fig. B.6 : Effect of left JO-restriction

(A) Change in antennal angle of the free (right) antenna in left JO-restricted moths
(Individuals: grey, mean: blue, s.e.m: light blue). (B) Change in right antennal angle

in control moths (Individuals: grey, mean: black, s.e.m: grey overlay). (C)
Box-and-whisker plots of Spearman’s correlation coefficients of right antennal angles
in left JO-restriction and control treatments. (D) Change in restricted (left) angle in

left JO-restricted moths (Individuals: grey, mean: blue, s.e.m: light blue). (E)
Change in left antennal angle in bilateral JO-restricted moths (Individuals: grey,
mean: red, s.e.m: light red). (F) Box-and-whisker plots of Spearman’s correlation
coefficients of left antennal antenna in left JO and both JO-restricted treatments.

Statistically different groups are shown by an asterisk and an open circle
(Mann-Whitney ranksum test; p < 0.01, p < 0.05 respectively).
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Fig. B.7 : Effect of right JO-restriction

(A) Change in antennal angle of the free (left) antenna in right JO-restricted moths
(Individuals: grey, mean: blue, s.e.m: light blue). (B) Change in left antennal angle

in control moths (Individuals: grey, mean: black, s.e.m: grey overlay). (C)
Box-and-whisker plots of Spearman’s correlation coefficients of left antennal angles in
right JO-restriction and control treatments. (D) Change in restricted (right) angle in

right JO-restricted moths (Individuals: grey, mean: blue, s.e.m: light blue). (E)
Change in right antennal angle in bilateral JO-restricted moths (Individuals: grey,
mean: red, s.e.m: light red). (F) Box-and-whisker plots of Spearman’s correlation

coefficients of right antennal antenna in right JO and both JO-restricted treatments.
Statistically different groups are shown by an asterisk and an open circle

(Mann-Whitney ranksum test; p < 0.01, p < 0.05 respectively).
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Fig. B.8 : Antennal angles of left JO-restricted moths

(A) left, (B) right and (C) inter-antennal angle for left JO-restricted moths. The
dark blue line represents the mean, with the light blue overlay representing the

standard error margin. Different shades represent different individuals. 16 out of 21
moths of the left JO-restriction treatments are shown here (rest in Figure 3.6). The

moths are split into three groups for better visibility of individuals
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Fig. B.9 : Antennal angles of right JO-restricted moths

(A) left, (B) right and (C) inter-antennal angle for right JO-restricted moths. The
dark green line represents the mean, with the light green overlay representing the

standard error margin. Different shades represent different individuals. 15 out of 20
moths of the right JO-restriction treatments are shown here (rest in Figure 3.6). The

moths are split into three groups for better visibility of individuals
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Fig. B.10 : Representative response to a bilateral impulse stimulus

(A) Displacement of left, right antenna respectively. (B) Spike raster for left (blue),
right (red) muscles. (C) Muscle activity does not change in response to the impulse

stimulus. Color correspond to the same entities as in Figure 3.8.
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Fig. B.11 : Muscle activity in response to bilateral impulse stimuli

Four types of impulse stimuli given (shown at the top of each panel) - (A) bilateral
forward, (B) bilateral backward, (C) clockwise (left forward, right backward) and

(D) anticlockwise (right forward, left backward). Muscle activity does not
consistently change in response to these stimuli (n=3 individuals). Color correspond

to the same entities as in Figure 3.9.
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Fig. B.12 : Muscle activity in response to unilateral step stimuli

Four unilateral step stimuli were given (shown at the top of each panel) - (A) left
forward, (B) right forward, (C) left backward and (D) right backward. Muscle

activity does not strongly change in response to these stimuli. Color correspond to
the same entities as in Figure 3.9.
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Fig. B.13 : Muscle activity in response to unilateral impulse stimuli

Four unilateral impulse stimuli were given (shown at the top of each panel) - (A) left
forward, (B) right forward, (C) left backward and (D) right backward). Muscle

activity does not change in response to these stimuli. Color correspond to the same
entities as in Figure 3.9.
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Appendix C

Supplementary data for Chapter 4

�

The simulation data relevant for this chapter is saved in the NCBS data servers.1

All the codes used to the simulations can be downloaded from my Github respository
(Hair-Plate-Sensitivity2).

1smb://storage.ncbs.res.in/dinesh/Archived%20Projects/2019-Hair-plate-sensitivity
2(https://github.com/AbstractGeek/Hair-Plate-Sensitivity
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Fig. C.1 : Validation using circular hair fields

Activations of circular hair fields were computed for different slopes. Analytically
computing the area, or using the numerical B-spline based approach, gave rise to

identical results.
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Fig. C.2 : Validation using elliptical hair fields

Activations of elliptical hair fields were computed for different slopes. Analytically
computing the area, or using the numerical B-spline based approach, gave rise to

identical results.
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Appendix D

Kinematics of free flight pitch-up
maneuvers in the housefly, Musca
domestica

D.1 Introduction
For successful flight, animals and man-made machines should be able to perform two
important tasks. First, they should be able to produce sufficient lift to counteract
gravity and take off. Second, they should be able to stably alter the magnitude and
direction of this lift vector to move from point A to point B without losing control and
crashing. Insects are particularly good at this; they can carry loads several times their
body weight, while being incredibly maneuverable (Dudley, 2002).

Miniature insects have a strict trade-off in their ability to generate lift and to control
flight. Smaller insects must flap their wings at higher frequencies to generate sufficient
lift, often at frequencies close to the limits of neural firing (Dudley, 2002). This puts
a strain on maneuverability, which requires fast sensory feedback to precisely control
wing kinematics and subsequent body position (Chang and Wang, 2014). Diptera, the
true flies, are a subset of such miniature insects which are incredibly maneuverable,
making them well suited for such studies. Both the aerodynamics of insect flight and
the associated neural feedback control have been extensively studied in Diptera.

Flies generate lift by flapping their wings along a fixed plane with respect to the body, at
high angles of attack and high wingbeat frequencies. The forces generated by flapping
are due to both steady-state mechanisms during the translation phase of flapping and
unsteady mechanisms during the rotation of the wing (Dickinson et al., 1999; Sane and
Dickinson, 2001, 2002) (reviewed in: Chin and Lentink (2016); Sane (2003)). In flies,
control of flight has been shown to be mediated by modified hindwings called halteres
that detect gyroscopic forces and provide flight stabilizing feedback (Dickinson, 1999;
Nalbach, 1994; Pringle, 1948). However, due to the small size of flies, and their rapid
wing beat frequency, it has been hard to quantify the effect of this flight stabilizing
feedback on the motion of the wing, and how it stabilizes the body. Specifically,
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relating minor changes in motions of the wing to changes in body trajectories has
proved challenging.

Wing motions typically modify body motion in two different ways. It either causes
changes in the flies’ velocity by changing the magnitude of the lift vector, or it generates
a torque that rotates the body. Changes in the direction of the lift-vector with respect
to the body is minimal; flies have to change their lift-vector direction by rotating
their body, much like a helicopter (David, 1978; Götz and Wandel, 1984). Alterations
in magnitude of lift vector and generation of torque along the flies’ principal axes
(yaw, pitch, roll) seem to be primarily controlled by changes in the amplitude of stroke
(Beatus et al., 2015; Fry et al., 2003; Muijres et al., 2014; Vogel, 1966, 1967b; Whitehead
et al., 2015) (reviewed in Dickinson and Muijres (2016)). These changes are generally
coupled with changes in wingbeat duration and stroke deviation that amplify the lift
vector changes produced by stroke amplitude modifications (Dickinson, 1999; Muijres
et al., 2014). However, subtle changes of the angle of attack in a stroke also seem
to contribute to changes in forward speed and yaw rotations (Bergou et al., 2010;
Dickinson et al., 1993; Muijres et al., 2015; Ristroph et al., 2011, 2010), and even pitch
rotations in hawkmoths (Cheng et al., 2011).

This rich corpus of literature on flight demonstrates how wings generate lift and how
changes in their kinematics can modify the body trajectories. However, in most of
these experiments wing motion was correlated to changes in body trajectories by either
evoking escape responses in flies or by perturbing them mid-flight. Such scenarios
need not reflect the wing kinematics during active flight maneuvers. Flies indeed
have been shown to perform the same maneuver in different ways depending on the
context (Muijres et al., 2014). Additionally, most of these experiments were done on
fruitflies, whose wing kinematics might not represent the control strategies used by the
larger, more maneuverable, species of dipteran flies. Here, we performed experiments
to understand the kinematics of active pitch-up maneuvers in the housefly, Musca
domestica. Using an L-shaped flight area, we were able to elicit pure pitch maneuvers,
which we filmed using high-speed cameras. We reconstructed the wing and the body
movements in three dimensions to determine the relationship between them.

D.2 Methods
Experiments described here were performed on wildtype houseflies, Musca domestica,
which were collected on the same day as the experiment.

Experimental setup and filming

Flies were introduced into an ‘L’-shaped Plexiglas flight chamber with square cross-
section (10 cm× 10 cm; Fig. D.1-A). A random checkerboard pattern on the walls
provided visual guidance to flies during flight. The chamber was fitted with two white
compact florescent lamps (CFL) at each end, which when on, attracted flies towards
the ends of the ‘L’. By switching on the lights in alternation, we could make flies
actively fly from one end of the flight chamber to the other with high repeatability.
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Wing kinematics of pitch-up manoeuvres

When the flies flew towards the top end of the L-box, they performed a sharp pitch-up
at the corner of the L. This was captured using two Phantom v7.3 cameras, aligned at
approximately right angles with respect to each other (Fig. D.1-A). The cameras filmed
the flies’ pitch-up at 4000 frames/sec, giving us approximately 16 frames per wing
beat (wingbeat frequency is approx. 250Hz). A 150-watt metal halide lamp provided
sufficient illumination for filming. Because flies are insensitive to wavelengths above 600
nm (Warrant and Nilsson, 2006), we placed a red filter that cuts off wavelengths under
610 nm to minimize impact of filming illumination on flight behavior. Before the start
of the experiment, the cameras views were calibrated with a standard calibration object
(for methodology please refer to Hedrick, 2008). Two or three flies were then released
in the chamber and their flight was monitored for pitch-up events. The cameras were
triggered manually when a pitch-up was observed.

Body and wing digitization

Flies’ head, abdomen, wing bases and wing tips were digitized in the two camera views
and the 3D position was reconstructed using software custom-written in MATLAB
(Hedrick, 2008). Using these points, we were able to determine the body angles (yaw,
pitch and roll), and two of the wing angles (stroke angle, stroke deviation). To deter-
mine the wing rotation angle for different frames, we adopted the approach used by
Fry et al. (2003). Using a custom-written wing alignment graphical interface (adopted
from Hedrick, 2008), we introduced a digital wireframe replica of the original wing
in the frame and attached it to the body coordinate system defined by the head and
the wing bases. Then we rotated the wireframe around to visually align it with the
actual wing in every frame and measured the angular alignment of the wireframe with
respect to the body coordinate system. By doing this for every frame, we digitized the
wing rotation angle of the actual wing (Fig. D.1-B,C). This allowed us to completely
determine all the body and wing kinematics of the fly during the pitch-up maneuver.

Body and wing angle definitions

The body coordinate system was first defined using the head and the two wing bases.
The Euler angles describing the orientation of the fly’s body coordinate system with
respect to the global coordinate system were computed according to the Tait-Bryan
convention. Such a definition allowed us to unambiguously compute the orientation of
a fly on the current frame as a rotation with respect to the fly’s body coordinate system
from the previous frame. Yaw, pitch and roll, the flies’ body angles, were defined as
rotations along the flies’ vertical, transverse and longitudinal axis respectively (flies’
principal axes, Fig. D.1-D).

Stroke plane is the average plane which the wing tips traverse; this is generally defined
over a wingbeat. To calculate this, the wing motion was first broken down into wing-
beats. Within each wingbeat, we found a plane that contained both the wings for every
frame. We averaged all planes in a wingbeat to compute the mean stroke plane. All
wing angles were computed with respect to the stroke plane. Additionally, the angle of
this plane with respect to the body plane was defined as stroke plane inclination (Fig.
D.1-D).
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Fig. D.1 : Experimental setup and angle definitions

(A) Houseflies were introduced into the L-shaped flight chamber and motivated to fly
towards the CFL lights at the two ends. Flies flying from the bottom end to the top
end of the chamber performed a pitch-up maneuver at the corner of the L, which

were captured by two high speed cameras filming at 4000 fps. (B, C) Front and side
views of the pitch-up maneuvers captured by the high-speed cameras. The wing

plane was digitized by fitting a digital wireframe on the wing images. (D) Yaw, pitch
and roll were defined as rotation along the vertical, transverse and longitudinal axis
of the fly (flies’ principal axes). Stroke plane for every wingbeat was computed as the
average plane containing both the wings. This was used to compute stroke angle,
stroke deviation, and the angle of attack of the wing (see methods for definitions)
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Wing kinematics of pitch-up manoeuvres

Three wing angles per wing were used to quantify wing position throughout the ma-
neuver. The stroke angle was defined as the wing’s angle of excursion within the stroke
plane. It was computed by measuring the angle between the wing’s projection on the
stroke plane and the horizontal axis passing through the wing bases (Fig. D.1-D). The
stroke deviation was defined as the angle between the wing and its projection on the
stroke plane (Fig. D.1-D). Finally, the wing rotation angle was defined as the angle
between the wing plane and the stroke plane (Fig. D.1-D). Additionally, we defined
the angle of attack of the wing as the angle between the wing plane and the velocity
vector of the wing. By this definition, the angle of attack of the wing is always between
0° and 90° during wing translation for both up and down stroke.

Apart from the wing and the body angles, we also computed the abdomen angle of the
fly during the pitch-up maneuver. The abdomen angle was defined as the angle of the
abdomen with respect to body plane (Fig. D.1-D). All the above computations and
the subsequent data analysis was done in MATLAB (The MathWorks, Natick, MA,
USA).

Data analysis
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Fig. D.2 : Identification of pitch-up events

Pitch-up events were identified as instances where the local maxima (red dots) in
∆pitch (change in pitch angle per frame) exceeded one standard deviation of ∆pitch
through the maneuver (represented by the dotted line). Zero-crossings (black dots) on
both sides of such maxima marked the start and end of a pitch-up event (amber box).
Sections that were not classified as pitch-up were considered to be straight flight.

For every fly, we broke down the maneuver into straight flight and pitch-up sections.
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We used ∆pitch, viz. change in pitch-angle per frame, for this classification. To remove
body oscillations due to wingbeat, we first filtered ∆pitch using a fourth order low-pass
Butterworth filter with a cut-off at 50Hz. Local maxima in ∆pitch which exceeded
one standard deviation of the ∆pitch for the whole maneuver were then isolated. The
closest zero-crossings on both sides of the maxima were found out and marked as the
start and the end of the pitch-up section (Fig. D.2). Sections which weren’t classified
as pitch-ups were considered to be straight flight sections.

To compare straight flight and pitch-up sections, using statistical and cross-correlational
methods, we first converted wing and body angle timeseries to wingbeat-based mea-
sures. Stroke amplitude was computed as the angle between the maximum and the
minimum stroke angle within a wingbeat. Stroke deviation and angle of attack were
averaged over the duration of the wingbeat. Other angles, such as body angles and
abdomen angles, were also averaged over the wingbeat.

We compared changes between straight flight and pitch-ups in every maneuver using
pairwise statistical tests. This allowed us to ignore the variability between flies and
only compare changes that occurred during the maneuver. For every parameter, we
calculated the average for pitch-up and compared it with average for straight flight.
If a maneuver had multiple pitch-ups and/or straight flights, we simply compared all
the pitch-ups with all the straight flights. Most of these parameter averages were not
normally distributed (Lilliefors test, p<0.05). For these, we used the Wilcoxon paired-
sample test to statistically compare straight and pitch-up sections. If the parameters
were normally distributed, we used the paired-sample t test instead as the Wilcoxon
paired-sample test has a lower power in distinguishing differences for samples from a
normal distribution (Zar, 2013).

Next, we computed cross-correlation of wing angles with both pitch and ∆pitch. Be-
cause the changes in wing angles generally preceded the body angles, we computed
the maximum cross-correlation coefficient within a window of two wingbeats. Confi-
dence intervals for the cross-correlation coefficients were estimated from the standard
deviation of the cross-correlation coefficient obtained for two white noise timeseries
(or auto-correlation for a white noise timeseries). Only cross-correlation coefficients
greater than 1.645 times the white-noise standard deviation (90% confidence interval)
were deemed correlated. Additionally, we used a one-sample student t-test to check if
the distribution of these cross-correlation coefficients were significantly different from
a distribution with zero mean. Only if the mean of cross-correlation coefficients for a
parameter was significantly different from zero, we refer to it as significantly correlated.
Using this method, we were able to quantify which parameters correlated with both
pitch and ∆pitch.

D.3 Results
We analysed a total of five pitch-up maneuvers, each of which were primarily charac-
terized by changes along the pitch-up axis of the fly (Fig. D.3-A, see supplementary
information for data). We show one representative throughout the paper, with statis-
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Fig. D.3 : Body and wing angles of a representative fly during a pitch-up
maneuver

(A) Yaw (bluish grey), pitch (purple) and roll (yellow) of fly in Fig. D.1 performing
a pitch-up maneuver. Sections classified as pitch-up were represented by an amber
box. (B-E) Stroke angle, stroke deviation, wing rotation angle and the angle of

attack of the left (blue) and right (red) wing during the pitch-up. The grey boxes and
the white gaps represent the downstroke and upstroke respectively. (F) The angle of
the stroke plane with respect to the body plane (the plane containing the head and

the wing bases) during the pitch up event.
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tics for all the analysed pitch up events where applicable. Fig. D.3 shows the body
and wing angles of a housefly performing a pitch-up. Using change in pitch per frame,
we broke down the maneuver into pitch-up and straight flight events (Fig. D.3-A,
see methods). Qualitatively, stroke angle of both wings increases during the pitch-up
and decreases back to normal levels after the maneuver (Fig. D.3-B). The other wing
angles, on the other hand, do not change as dramatically as stroke angle, but subtle
changes do occur (Fig. D.3-C-E). Interestingly, the stroke plane inclination decreases
just at the initiation of pitch-up, after which it settles back to normal levels (Fig. D.3-
F). To visualize these changes, we plotted the wing-tip trajectory of the representative
for normal and pitch-up flight. The changes in both stroke amplitude and stroke plane
are apparent in this visualization (Fig. D.4-G). Additionally, the deviation from the
stroke plane also increases, i.e. wing trajectories are no longer tight around the stroke
plane (Fig. D.4-G).
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Fig. D.4 : Wing tip trajectories during a pitch-up manoeuvre

Wing tip trajectories of the left and right wing of the fly during straight flight (grey)
and peak pitch-up (yellow). The dashed lines represent the average stroke plane

during straight and pitch-up flight.

To quantify the correlation between wing angle changes and body angles, we converted
the timeseries into a wingbeat-based measure (see methods). In Fig. D.5, we show the
wingbeat measures of body and wing angles of the fly shown in Fig. D.4. Averages of
these measures during pitch-up and straight flights were computed for every fly and
compared using pairwise tests (box plots in Fig. D.5; see methods for details). The
pitch-up classification was validated by comparing the change in body angles inside a
pitch-up event with changes during straight flight. Only ∆pitch increased significantly
during a pitch-up event in all flies (Fig. D.5-A,B).

Stroke amplitude of both wings increased significantly during a pitch-up event (Fig.
D.5-C,D). This increase is primarily due to an increase in the downstroke angle during a
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pitch-up (Fig. D.7-A,B). Although the upstroke angle also increased, it did not change
symmetrically in both wings for all flies (Fig. D.7-C,D). Similarly, the two other wing
angles, stroke deviation and angle of attack, did not change symmetrically during a
pitch-up event (Fig. D.5-E-H).

The inclination of the stroke plane with respect to the body plane decreased consis-
tently during pitch-up in all flies. (Fig. D.5-I,J). This decrease was accompanied by
decreases in wingbeat durations (Fig. D.7-E,F). Although this decrease was prominent
during the downstroke, both the stroke durations decreased during a pitch-up (Fig.
D.7-G,H). Finally, the angle of the abdomen with respect to the body plane does not
change significantly between normal and pitch-up events (Fig. D.5-I,J).

We next quantified the cross-correlation between wing angles and change in pitch
angle (Fig. D.6, see methods). Left and right stroke amplitude, as well as mean stroke
amplitude of both wings were significantly correlated with ∆pitch (Fig. D.6, Fig. D.8-
A). The downstroke angle, and upstroke angle to an extent, were also correlated with
changes in pitch angle (Fig. D.7-A). Stroke plane inclination was negatively correlated
with pitch-angle, indicating a decrease during pitch-up (Fig. D.6). Similarly, decreases
in wingbeat, upstroke and downstroke durations were correlated with pitch-up (Fig.
D.7-A). Other angles, like stroke deviation, angle of attack and abdomen angle do not
show any significant correlations with ∆pitch (Fig. D.6).

Both pitch-event based analysis and the above cross-correlation analysis look for changes
correlated with ∆pitch that return to normal after the pitch-up maneuver. To check
if there were any body angle based changes in wing angles, we computed the cross-
correlations of the wing angles with pitch, instead of ∆pitch. Interestingly, abdomen
angle is inversely correlated with pitch angle, i.e., it decreases with increasing pitch
angle (Fig. D.7-B). The other wing angles do not show any consistently significant
correlations with pitch (Fig. D.7-B,C).

D.4 Discussion
Flies perform a vast variety of behaviors ranging from rapid territorial chases (Land and
Collett, 1974) to relatively slower tracking of odor sources (Saxena et al., 2018). Their
capability to perform such vastly different behaviors based on the context rests critically
on their ability to be stable yet maneuverable during flight (dynamic flight stability –
reviewed in Sun (2014)). Although a lot is known about the aerodynamics of insect
flight and the sensory control of it, it is not clear how changes in wing motion translate
to complex body maneuvers that underlie this vast range of behaviors. Previous studies
have outlined the role of stroke angle in pitch-up maneuvers elicited by escape responses
and other perturbations (Muijres et al., 2014; Whitehead et al., 2015). In this study,
we sought to correlate wing kinematics with associated body rotations during active
pitch-up maneuvers in houseflies.

We find that the stroke amplitude of the housefly increases significantly when it pitches
up. This is primarily due an increase in the downstroke angle, i.e. the front stroke
angle, during the pitch-up maneuver (Fig. D.7-A,B, D.8-A). Additionally, wing beat
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Fig. D.5 : Changes in wing-angles during a pitch-up event

(A) Pitch and change in pitch (∆pitch) of a representative fly during a pitch-up.
Unlike Fig. D.4-A, the pitch angle is averaged over the duration of a wingbeat. The

amber box represents a pitch-up event (see methods for details). (B) Pairwise
difference of ∆body angles between pitch-up and straight flight sections for all flies.

Only ∆pitch changes significantly during a pitch-up event. (C-J) Changes in
wingbeat-based measures for a pitch-up event is shown for a representative fly (same
as Fig. D.4). The distribution of pairwise difference between pitch-up and straight
flight sections, for all flies, are illustrated as box and whisker plots. The central 50%
of the data around the median (red line) is represented by the box. The whiskers

represent data within 1.5 times the interquartile range. Asterisks represent
statistically significant comparisons (Wilcoxon/student-t paired-sample test, * -

p < 0.05, ** - p < 0.01, *** - p < 0.001).
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Coefficient of cross-correlation between the wingbeat-based measures and ∆pitch.
Filled circles indicate significant correlations (90% confidence interval, see methods).

Asterisks represent statistically significant comparisons.

duration decreases concurrently with increases in stroke amplitude (Fig. D.7-E,F, D.8-
A). This decrease is again mainly due to a decrease in downstroke duration of the
wingbeat (Fig. D.7-G,H, D.8-A). Increases in downstroke angle, and a concomitant
decrease in downstroke duration, would substantially increase the wing tip velocity
during the downstroke, thereby increasing the downstroke lift. As an equivalent lift is
not generated during the upstroke, these changes would cause a torque that would cause
the fly to pitch-up. This result is consistent with previous experiments, primarily done
on fruitflies (Dickinson, 1999; Muijres et al., 2014; Whitehead et al., 2015; Zanker, 1990;
reviewed in Dickinson and Muijres, 2016), suggesting that an increase in downstroke
angle coupled with a decrease in downstroke duration might be one way flies generate
a pitch-up torque.

However, unlike fruitflies, we find that changes in upstroke angle also contribute to
the changes in stroke amplitude, albeit inconsistently (Fig. D.7-C,D, D.8-A). Upstroke
duration also decreases during the pitch-up maneuver, although not to the same extent
as the downstroke duration (Fig. D.7-E,F, D.8-A). Similarly, stroke deviation does not
symmetrically increase in both wings during a pitch-up, although such changes are
clearly seen in wing-tip trajectories (Fig. D.4, see supplementary information for all
the data). Bidirectional increase in stroke angle, coupled with changes in wingbeat
duration and stroke deviation, especially at the ends of a stroke (Fig. D.6), might
enhance torque generation, thereby aiding rapid pitch-ups in houseflies. Subtle but
distinct changes to wing trajectories, similar to the ones seen during pitch-up, have
been noticed in flies presented with different airflows (Hollick, 1940).

A key finding of this study is the change in stroke plane inclination during a pitch-up
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maneuver. Stroke plane inclination decreases, i.e. stroke plane angle shifts towards
the body plane right at the onset of pitch-up (Fig. D.6, D.5-I,J, D.6. These changes,
although small, are tightly correlated with change in pitch angle. This is quite different
from increases in stroke amplitude which occur well in advance of a pitch-up maneuver.
The tight temporal link between the decrease in stroke plane inclination and change in
pitch leads us to suggest that this event initiates the pitch-up maneuver in houseflies.
However, it has been suggested that stroke plane angle and stroke amplitude are inter-
dependent in Diptera, which might potentially explain our observed increase in stroke
plane angle (Vogel, 1967a). On the other hand, independent shifts of stroke plane
angle have been proposed to control free flight maneuvers in flies (Zanker, 1988b). To
resolve this, we compared the correlation between stroke amplitude and stroke plane
angle with change in pitch and stroke plane angle. If stroke plane inclination and stroke
amplitude are indeed interdependent, their correlation should be better than the cor-
relation between stroke plane inclination and change in pitch angle. The correlation
between stroke plane inclination and change in pitch is far tighter than its correlation
with stroke amplitude (Fig. D.8-D), although the difference is not statistically signifi-
cant. Rigorous experiments with higher sample size of pitch-ups would be required to
thoroughly quantify the extent of change in stroke plane and its interdependence on
stroke amplitude during a pitch-up manoeuvre.

Angle of attack, on the other hand, does not change much on the short timescales of
a pitch-up event in houseflies (Fig. D.5-G,H). This also matches observations from
fruitflies (Muijres et al., 2014; Whitehead et al., 2015). However, our angle of attack
resolution was limited to 0.1 radians (approx. ~5.7°) due to our wing digitization
procedure (see methods). Small changes in angle of attack would therefore not be
detectable in our experiments. For instance, fruitflies have been shown to change
their angle of attack during fast forward flight (Ristroph et al., 2011). Additionally,
hawkmoths have been shown to generate active pitch-up torque by changing their angle
of attack (Cheng et al., 2011). Houseflies too might be using small changes in angle
of attack to aid pitch up torque generation and possibly lift generation during vertical
flight.

Abdomen angle, like stroke plane inclination, is inversely correlated with the absolute
pitch angle, i.e., it streamlines with the body plane as the fly pitches up (Fig. D.5-I,
D.8-B). This suggests that the sustained lift after a pitch-up requires changes in body
posture. Lift-thrust ratio has indeed been shown to be dependent on body angle in flies
(Vogel, 1966; Zanker, 1988b). This, combined with the changes in stroke amplitude
and stroke plane angle, might give rise to the pitch-up torque as proposed by Zanker
(1988b). Increasing number of recent literature suggest that the abdomen is yet another
structure that insects use to control flight (Berthé and Lehmann, 2015; Dyhr et al.,
2013; Hinterwirth and Daniel, 2010; Lawson and Srinivasan, 2017; Luu et al., 2011;
Taylor et al., 2013; Zanker, 1988a).

As a whole, our study propose that houseflies use a combination of stroke amplitude,
stroke plane inclination, wingbeat duration and abdomen angle to actively pitch-up.
The next step would be to recreate the trajectories in dynamically scaled robots to
tease out the relative contribution of each of these parameters (such as those used in
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Dickinson et al. (1999). These robots, however, might first have to be altered to include
the abdomen to untangle its influence on control of flight. Elucidating the mechanical
structures that shape wing kinematics might be far more challenging. The wing-hinge
is a complex biomechanical structure which combines passive cuticular linkages with
an active clutch and gear system for fast yet flexible control of the wing (reviewed
in Deora et al. (2017)). Using our methodology to generate repeatable active pitch-
ups, one can now begin to experiment with different components of the wing hinge to
quantify its effect on wing and body kinematics, thereby unraveling the role of these
mechanical structures in control of flight.

143



Bibliography

Bibliography
T. Beatus, J. M. Guckenheimer, and I. Cohen. Controlling roll perturbations in fruit

flies. Journal of The Royal Society Interface, 12(105):20150075, Apr. 2015. ISSN
1742-5689, 1742-5662. doi: 10.1098/rsif.2015.0075.

A. J. Bergou, L. Ristroph, J. Guckenheimer, I. Cohen, and Z. J. Wang. Fruit Flies Mod-
ulate Passive Wing Pitching to Generate In-Flight Turns. Physical Review Letters,
104(14):148101, Apr. 2010. doi: 10.1103/PhysRevLett.104.148101.

R. Berthé and F.-O. Lehmann. Body appendages fine-tune posture and moments in
freely manoeuvring fruit flies. Journal of Experimental Biology, 218(20):3295–3307,
Oct. 2015. ISSN 0022-0949, 1477-9145. doi: 10.1242/jeb.122408.

S. Chang and Z. J. Wang. Predicting fruit fly’s sensing rate with insect flight simula-
tions. Proceedings of the National Academy of Sciences, 111(31):11246–11251, Aug.
2014. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1314738111.

B. Cheng, X. Deng, and T. L. Hedrick. The mechanics and control of pitching manoeu-
vres in a freely flying hawkmoth (Manduca sexta). Journal of Experimental Biology,
214(24):4092–4106, Dec. 2011. ISSN 0022-0949, 1477-9145. doi: 10.1242/jeb.062760.

D. D. Chin and D. Lentink. Flapping wing aerodynamics: From insects to vertebrates.
Journal of Experimental Biology, 219(7):920–932, Apr. 2016. ISSN 0022-0949, 1477-
9145. doi: 10.1242/jeb.042317.

C. T. David. The relationship between body angle and flight speed in free-flying
Drosophila. Physiological Entomology, 3(3):191–195, 1978.

T. Deora, N. Gundiah, and S. P. Sane. Mechanics of the thorax in flies. Journal
of Experimental Biology, 220(8):1382–1395, Apr. 2017. ISSN 0022-0949, 1477-9145.
doi: 10.1242/jeb.128363.

M. H. Dickinson. Haltere–mediated equilibrium reflexes of the fruit fly, Drosophila
melanogaster. Philosophical Transactions of the Royal Society of London B: Bio-
logical Sciences, 354(1385):903–916, May 1999. ISSN 0962-8436, 1471-2970. doi:
10.1098/rstb.1999.0442.

M. H. Dickinson and F. T. Muijres. The aerodynamics and control of free flight ma-
noeuvres in Drosophila. Phil. Trans. R. Soc. B, 371(1704):20150388, Sept. 2016.
ISSN 0962-8436, 1471-2970. doi: 10.1098/rstb.2015.0388.

M. H. Dickinson, F. O. Lehmann, and K. G. Gotz. The active control of wing rotation
by Drosophila. Journal of Experimental Biology, 182(1):173–189, Sept. 1993. ISSN
0022-0949, 1477-9145.

M. H. Dickinson, F.-O. Lehmann, and S. P. Sane. Wing Rotation and the Aerodynamic
Basis of Insect Flight. Science, 284(5422):1954–1960, June 1999. ISSN 0036-8075,
1095-9203. doi: 10.1126/science.284.5422.1954.

R. Dudley. The Biomechanics of Insect Flight – Form, Function, Evolution. Princeton

144



Bibliography

University Press, Princeton, NJ, reprint edition edition, Oct. 2002. ISBN 978-0-691-
09491-5.

J. P. Dyhr, K. A. Morgansen, T. L. Daniel, and N. J. Cowan. Flexible strategies for
flight control: An active role for the abdomen. Journal of Experimental Biology,
216(9):1523–1536, May 2013. ISSN 0022-0949, 1477-9145. doi: 10.1242/jeb.077644.
00064.

S. N. Fry, R. Sayaman, and M. H. Dickinson. The Aerodynamics of Free-Flight Ma-
neuvers in Drosophila. Science, 300(5618):495–498, Apr. 2003. ISSN 0036-8075,
1095-9203. doi: 10.1126/science.1081944.

K. G. Götz and U. Wandel. Optomotor control of the force of flight in Drosophila
and Musca. Biological Cybernetics, 51(2):135–139, Nov. 1984. ISSN 1432-0770. doi:
10.1007/BF00357927.

T. L. Hedrick. Software techniques for two- and three-dimensional kinematic measure-
ments of biological and biomimetic systems. Bioinspiration & Biomimetics, 3(3):
034001, 2008. ISSN 1748-3190. doi: 10.1088/1748-3182/3/3/034001.

A. J. Hinterwirth and T. L. Daniel. Antennae in the hawkmoth Manduca sexta (Lep-
idoptera, Sphingidae) mediate abdominal flexion in response to mechanical stimuli.
Journal of Comparative Physiology A, 196(12):947–956, Dec. 2010. ISSN 0340-7594,
1432-1351. doi: 10.1007/s00359-010-0578-5. 00053.

F. S. J. Hollick. The flight of the dipterous fly Muscina stabulans Fallén. Phil. Trans.
R. Soc. Lond. B, 230(572):357–390, Nov. 1940. ISSN 0080-4622, 2054-0280. doi:
10.1098/rstb.1940.0003.

M. F. Land and T. S. Collett. Chasing behaviour of houseflies (Fannia canicularis).
Journal of comparative physiology, 89(4):331–357, Dec. 1974. ISSN 1432-1351. doi:
10.1007/BF00695351.

K. K. K. Lawson and M. V. Srinivasan. Flight control of fruit flies: Dynamic response
to optic flow and headwind. Journal of Experimental Biology, 220(11):2005–2016,
June 2017. ISSN 0022-0949, 1477-9145. doi: 10.1242/jeb.153056.

T. Luu, A. Cheung, D. Ball, and M. V. Srinivasan. Honeybee flight: A novel ‘stream-
lining’ response. Journal of Experimental Biology, 214(13):2215–2225, July 2011.
ISSN 0022-0949, 1477-9145. doi: 10.1242/jeb.050310.

F. T. Muijres, M. J. Elzinga, J. M. Melis, and M. H. Dickinson. Flies Evade Looming
Targets by Executing Rapid Visually Directed Banked Turns. Science, 344(6180):
172–177, Apr. 2014. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.1248955.

F. T. Muijres, M. J. Elzinga, N. A. Iwasaki, and M. H. Dickinson. Body saccades of
Drosophila consist of stereotyped banked turns. Journal of Experimental Biology,
218(6):864–875, Mar. 2015. ISSN 0022-0949, 1477-9145. doi: 10.1242/jeb.114280.

G. Nalbach. Extremely non-orthogonal axes in a sense organ for rotation: Behavioural

145



Bibliography

analysis of the dipteran haltere system. Neuroscience, 61(1):149–163, July 1994.
ISSN 0306-4522. doi: 10.1016/0306-4522(94)90068-X.

J. W. S. Pringle. The gyroscopic mechanism of the halteres of Diptera. Phil. Trans.
R. Soc. Lond. B, 233(602):347–384, Nov. 1948. ISSN 0080-4622, 2054-0280. doi:
10.1098/rstb.1948.0007.

L. Ristroph, A. J. Bergou, G. Ristroph, K. Coumes, G. J. Berman, J. Guckenheimer,
Z. J. Wang, and I. Cohen. Discovering the flight autostabilizer of fruit flies by
inducing aerial stumbles. Proceedings of the National Academy of Sciences, 107(11):
4820–4824, Mar. 2010. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1000615107.
00116.

L. Ristroph, A. J. Bergou, J. Guckenheimer, Z. J. Wang, and I. Cohen. Paddling Mode
of Forward Flight in Insects. Physical Review Letters, 106(17):178103, Apr. 2011.
doi: 10.1103/PhysRevLett.106.178103.

S. P. Sane. The aerodynamics of insect flight. Journal of Experimental Biology, 206
(23):4191–4208, Dec. 2003. ISSN 0022-0949, 1477-9145. doi: 10.1242/jeb.00663.

S. P. Sane and M. H. Dickinson. The control of flight force by a flapping wing: Lift and
drag production. Journal of Experimental Biology, 204(15):2607–2626, Aug. 2001.
ISSN 0022-0949, 1477-9145.

S. P. Sane and M. H. Dickinson. The aerodynamic effects of wing rotation and a
revised quasi-steady model of flapping flight. Journal of Experimental Biology, 205
(8):1087–1096, Apr. 2002. ISSN 0022-0949, 1477-9145.

N. Saxena, D. Natesan, and S. P. Sane. Odor source localization in complex visual
environments by fruit flies. The Journal of Experimental Biology, 221(2):jeb172023,
Jan. 2018. ISSN 0022-0949, 1477-9145. doi: 10.1242/jeb.172023.

M. Sun. Insect flight dynamics: Stability and control. Reviews of Modern Physics, 86
(2):615–646, May 2014. doi: 10.1103/RevModPhys.86.615.

G. J. Taylor, T. Luu, D. Ball, and M. V. Srinivasan. Vision and air flow combine to
streamline flying honeybees. Scientific Reports, 3, Sept. 2013. ISSN 2045-2322. doi:
10.1038/srep02614.

S. Vogel. Flight in Drosophila : I. Flight Performance of Tethered Flies. Journal of
Experimental Biology, 44(3):567–578, June 1966. ISSN 0022-0949, 1477-9145.

S. Vogel. Flight in Drosophila : II. Variations in Stroke Parameters and Wing Contour.
Journal of Experimental Biology, 46(2):383–392, Apr. 1967a. ISSN 0022-0949, 1477-
9145.

S. Vogel. Flight in Drosophila : III. Aerodynamic Characteristics of Fly Wing Sand
Wing Models. Journal of Experimental Biology, 46(3):431–443, June 1967b. ISSN
0022-0949, 1477-9145.

E. Warrant and D.-E. Nilsson. Invertebrate Vision. Cambridge University Press, Oct.
2006. ISBN 978-0-521-83088-1.

146



Bibliography

S. C. Whitehead, T. Beatus, L. Canale, and I. Cohen. Pitch perfect: How fruit flies
control their body pitch angle. Journal of Experimental Biology, 218(21):3508–3519,
Nov. 2015. ISSN 0022-0949, 1477-9145. doi: 10.1242/jeb.122622.

J. M. Zanker. How does lateral abdomen deflection contribute to flight control of-
Drosophila melanogaster? Journal of Comparative Physiology A, 162(5):581–588,
Sept. 1988a. ISSN 0340-7594, 1432-1351. doi: 10.1007/BF01342633.

J. M. Zanker. On the mechanism of speed and altitude control in Drosophila
melanogaster. Physiological Entomology, 13(3):351–361, 1988b. ISSN 1365-3032.
doi: 10.1111/j.1365-3032.1988.tb00485.x.

J. M. Zanker. The wing beat of Drosophila Melanogaster. III. Control. Phil. Trans.
R. Soc. Lond. B, 327(1238):45–64, Feb. 1990. ISSN 0080-4622, 2054-0280. doi:
10.1098/rstb.1990.0042.

147



D.5 Supplementary information

60

90

120

D
o

w
n

s
tr

o
k
e

a
n

g
le

 (
d

e
g

)

-10

0

30

D
o

w
n

s
tr

o
k
e

 a
n

g
le

 

(d
e

g
)

A
** ***

0 5 10 15 20 25

Time (wingbeats)

Left Right

E

G

B

C D

F

1

1.5

2

S
tr

o
k
e

 d
u

ra
ti
o

n

(m
s
)

Up

stroke

Down

stroke

-0.5

0

0.5

S
tr

o
k
e

 d
u

ra
ti
o

n

(m
s
)

Up

stroke

Down

stroke
* ***

2

3

4

W
in

g
b

e
a

t 
d

u
ra

ti
o

n

(m
s
)

wingbeat duration
-0.5

0

0.5

W
in

g
b

e
a

t 
d

u
ra

ti
o

n

(m
s
)

***

H

-100

-70

-40

U
p

s
tr

o
k
e

a
n

g
le

 (
d

e
g

)

-35

0

15

U
p

s
tr

o
k
e

 a
n

g
le

 

(d
e

g
)

Left

Right

**

Fig. D.7 : Changes in wing-stroke measures during pitch-up

(A-H) Changes in stroke parameters during a pitch-up event for a representative fly
(same as Fig. D.5). The distribution of pairwise difference between pitch-up and

straight flight sections, for all flies, are illustrated as box and whisker plots. Asterisks
represent statistically significant comparisons (Wilcoxon paired-sample test,

*-p < 0.05,**-p < 0.01,***-p < 0.001).



A

B

C

D

-1

0

1

mean stroke

amplitude

wingbeat

duration

upstroke

duration

downstroke

duration

left

upstroke

angle

right left

downstroke

angle

right

C
ro

s
s
-c

o
rr

e
la

ti
o
n

c
o
e
ff
ic

ie
n
t

mean stroke

amplitude

wingbeat

duration

upstroke

duration

downstroke

duration

-1

0

1

left

upstroke

angle

right left

downstroke

angle

right

C
ro

s
s
-c

o
rr

e
la

ti
o
n

c
o
e
ff
ic

ie
n
t

* ** ** *** * ******

stroke plane

inclination

abdomen

angle

left

stroke

amplitude

right left

stroke

deviation

right left

angle of

attack

right

C
ro

s
s
-c

o
rr

e
la

ti
o
n

c
o
e
ff
ic

ie
n
t

-1

0

1 **

C
ro

s
s
-c

o
rr

e
la

ti
o
n

c
o
e
ff
ic

ie
n
t

-1

0

1

mean stroke

amplitude

∆Pitch

Fig. D.8 : Cross-correlation coefficients of wingbeat-based measures with
pitch

(A-H) Coefficient of cross-correlation between the wingbeat-based measures and
(raw) pitch angle. Filled circles indicate significant correlations (90% confidence
interval, see methods). Asterisks represent statistically significant comparisons..



-120 0 120

Stroke angle (deg)

-120 0 120

Stroke angle (deg)

-30

0

30

60

S
tr

o
k
e

 d
e

v
ia

ti
o

n
 (

d
e

g
)

0 50 100 150 200 250

Time (millseconds)

10

20

30

40

S
tr

o
k
e

 p
la

n
e

in
c
lin

a
ti
o

n
 (

d
e

g
)

0

45

90

A
tt

a
c
k
 o

f

a
n

g
le

 (
d

e
g

)

0

90

180

R
o

ta
ti
o

n

a
n

g
le

 (
d

e
g

)

-40

0

40

D
e

v
ia

ti
o

n

a
n

g
le

 (
d

e
g

)

-120

0

120

S
tr

o
k
e

a
n

g
le

 (
d

e
g

)

-30

0

40

75

B
o

d
y

a
n

g
le

s
 (

d
e

g
)

Raw plots (Fly-2)
Supplementary Information

Natesan, Wadhwa and Sane



-120 0 120

Stroke angle (deg)

-120 0 120

Stroke angle (deg)

-30

0

30

60

S
tr

o
k
e

 d
e

v
ia

ti
o

n
 (

d
e

g
)

0 20 40 60 80 100 120 140

Time (millseconds)

10

20

30

40

S
tr

o
k
e

 p
la

n
e

in
c
lin

a
ti
o

n
 (

d
e

g
)

0

45

90

A
tt

a
c
k
 o

f

a
n

g
le

 (
d

e
g

)

0

90

180

R
o

ta
ti
o

n

a
n

g
le

 (
d

e
g

)

-40

0

40

D
e

v
ia

ti
o

n

a
n

g
le

 (
d

e
g

)

-120

0

120

S
tr

o
k
e

a
n

g
le

 (
d

e
g

)

-30

0

40

75

B
o

d
y

a
n

g
le

s
 (

d
e

g
)

Raw plots (Fly-3)
Supplementary Information

Natesan, Wadhwa and Sane



-120 0 120

Stroke angle (deg)

-120 0 120

Stroke angle (deg)

-30

0

30

60

S
tr

o
k
e

 d
e

v
ia

ti
o

n
 (

d
e

g
)

0 5 10 15 20 25 30 35 40 45 50

Time (millseconds)

10

20

30

40

S
tr

o
k
e

 p
la

n
e

in
c
lin

a
ti
o

n
 (

d
e

g
)

0

45

90

A
tt

a
c
k
 o

f

a
n

g
le

 (
d

e
g

)

0

90

180

R
o

ta
ti
o

n

a
n

g
le

 (
d

e
g

)

-40

0

40

D
e

v
ia

ti
o

n

a
n

g
le

 (
d

e
g

)

-120

0

120

S
tr

o
k
e

a
n

g
le

 (
d

e
g

)

-30

0

40

75

B
o

d
y

a
n

g
le

s
 (

d
e

g
)

Raw plots (Fly-4)
Supplementary Information

Natesan, Wadhwa and Sane



-120 0 120

Stroke angle (deg)

-120 0 120

Stroke angle (deg)

-30

0

30

60

S
tr

o
k
e

 d
e

v
ia

ti
o

n
 (

d
e

g
)

0 10 20 30 40 50 60 70 80 90 100

Time (millseconds)

10

20

30

40

S
tr

o
k
e

 p
la

n
e

in
c
lin

a
ti
o

n
 (

d
e

g
)

0

45

90

A
tt

a
c
k
 o

f

a
n

g
le

 (
d

e
g

)

0

90

180

R
o

ta
ti
o

n

a
n

g
le

 (
d

e
g

)

-40

0

40

D
e

v
ia

ti
o

n

a
n

g
le

 (
d

e
g

)

-120

0

120

S
tr

o
k
e

a
n

g
le

 (
d

e
g

)

-30

0

40

75

B
o

d
y

a
n

g
le

s
 (

d
e

g
)

Raw plots (Fly-5)
Supplementary Information

Natesan, Wadhwa and Sane



0 10 20 30 40 50 60

Time (wingbeats)

1.25

1.75

2.25

S
tr

o
k
e

d
u

ra
ti
o

n

(m
s
)

3

4

5

W
in

g
b

e
a

t

d
u

ra
ti
o

n

(m
s
)

-90

-50

-10

U
p

s
tr

o
k
e

a
n

g
le

(d
e

g
)

45

75

105

D
o

w
n

s
tr

o
k
e

a
n

g
le

(d
e

g
)

0

25

50

A
b

d
o

m
e

n
 a

n
g

le

(d
e

g
)

0

25

50

S
tr

o
k
e

 p
la

n
e

in
c
lin

a
ti
o

n

(d
e

g
)

30

55

80

A
v
e

ra
g

e

a
n

g
le

 o
f

a
tt

a
c
k
 (

d
e

g
)

-10

0

10

20

A
v
e

ra
g

e

s
tr

o
k
e

d
e

v
ia

ti
o

n
 (

d
e

g
)

60

120

180

S
tr

o
k
e

a
m

p
lit

u
d

e

(d
e

g
)

-5

5

15

C
h

a
n

g
e

 in
 P

itc
h

(d
e

g
)

0

35

70

B
o

d
y
 P

it
c
h

(d
e

g
)

Wingbeat plots (Fly-2)
Supplementary Information

Natesan, Wadhwa and Sane



0 5 10 15 20 25 30

Time (wingbeats)

1.25

1.75

2.25

S
tr

o
k
e

d
u

ra
ti
o

n

(m
s
)

3

4

5

W
in

g
b

e
a

t

d
u

ra
ti
o

n

(m
s
)

-90

-50

-10

U
p

s
tr

o
k
e

a
n

g
le

(d
e

g
)

45

75

105

D
o

w
n

s
tr

o
k
e

a
n

g
le

(d
e

g
)

0

25

50

A
b

d
o

m
e

n
 a

n
g

le

(d
e

g
)

0

25

50

S
tr

o
k
e

 p
la

n
e

in
c
lin

a
ti
o

n

(d
e

g
)

30

55

80

A
v
e

ra
g

e

a
n

g
le

 o
f

a
tt

a
c
k
 (

d
e

g
)

-10

0

10

20

A
v
e

ra
g

e

s
tr

o
k
e

d
e

v
ia

ti
o

n
 (

d
e

g
)

60

120

180

S
tr

o
k
e

a
m

p
lit

u
d

e

(d
e

g
)

-5

5

15

C
h

a
n

g
e

 in
 P

itc
h

(d
e

g
)

0

35

70

B
o

d
y
 P

it
c
h

(d
e

g
)

Wingbeat plots (Fly-3)
Supplementary Information

Natesan, Wadhwa and Sane



0 1 2 3 4 5 6 7 8 9

Time (wingbeats)

1.25

1.75

2.25

S
tr

o
k
e

d
u

ra
ti
o

n

(m
s
)

3

4

5

W
in

g
b

e
a

t

d
u

ra
ti
o

n

(m
s
)

-90

-50

-10

U
p

s
tr

o
k
e

a
n

g
le

(d
e

g
)

45

75

105

D
o

w
n

s
tr

o
k
e

a
n

g
le

(d
e

g
)

0

25

50

A
b

d
o

m
e

n
 a

n
g

le

(d
e

g
)

0

25

50

S
tr

o
k
e

 p
la

n
e

in
c
lin

a
ti
o

n

(d
e

g
)

30

55

80

A
v
e

ra
g

e

a
n

g
le

 o
f

a
tt

a
c
k
 (

d
e

g
)

-10

0

10

20

A
v
e

ra
g

e

s
tr

o
k
e

d
e

v
ia

ti
o

n
 (

d
e

g
)

60

120

180

S
tr

o
k
e

a
m

p
lit

u
d

e

(d
e

g
)

-5

5

15

C
h

a
n

g
e

 in
 P

itc
h

(d
e

g
)

0

35

70

B
o

d
y
 P

it
c
h

(d
e

g
)

Wingbeat plots (Fly-4)
Supplementary Information

Natesan, Wadhwa and Sane



0 5 10 15 20 25

Time (wingbeats)

1.25

1.75

2.25

S
tr

o
k
e

d
u

ra
ti
o

n

(m
s
)

3

4

5

W
in

g
b

e
a

t

d
u

ra
ti
o

n

(m
s
)

-90

-50

-10

U
p

s
tr

o
k
e

a
n

g
le

(d
e

g
)

45

75

105

D
o

w
n

s
tr

o
k
e

a
n

g
le

(d
e

g
)

0

25

50

A
b

d
o

m
e

n
 a

n
g

le

(d
e

g
)

0

25

50

S
tr

o
k
e

 p
la

n
e

in
c
lin

a
ti
o

n

(d
e

g
)

30

55

80

A
v
e

ra
g

e

a
n

g
le

 o
f

a
tt

a
c
k
 (

d
e

g
)

-10

0

10

20

A
v
e

ra
g

e

s
tr

o
k
e

d
e

v
ia

ti
o

n
 (

d
e

g
)

60

120

180

S
tr

o
k
e

a
m

p
lit

u
d

e

(d
e

g
)

-5

5

15

C
h

a
n

g
e

 in
 P

itc
h

(d
e

g
)

0

35

70

B
o

d
y
 P

it
c
h

(d
e

g
)

Wingbeat plots (Fly-5)
Supplementary Information

Natesan, Wadhwa and Sane


	Declaration
	Declaration of originality of research work
	Certificate (Prof. Sanjay P. Sane)
	Certificate (Prof. Orjan Ekeberg)
	Certificate (Head of Academics, NCBS)
	Acknowledgments
	Summary
	Sammanfattning (Swedish summary)
	Publications
	Organization of the thesis
	List of Figures
	Contents
	Peering into the neuromechanical black box
	Introduction
	Mathematical description of a behavior
	Structure of the neuromechanical black box
	Unpacking the neuromechanical black box
	Advantages and challenges
	Antennal positioning in insects
	Bibliography

	Airflow-dependent modulation of antennal positioning reflex
	Introduction
	Methods
	Results
	Discussion
	Bibliography

	Modulation of set-point by the Johnston's organ
	Introduction
	Methods
	Results
	Discussion
	Bibliography

	Modeling Böhm’s bristle sensitivity to antennal movements
	Introduction
	Methods
	Results
	Discussion
	Bibliography

	Appendix Supplementary data for Chapter 2
	Appendix Supplementary data for Chapter 3
	Calibration of stimulus setup
	Supplementary data

	Appendix Supplementary data for Chapter 4
	Appendix Kinematics of free flight pitch-up maneuvers in the housefly, Musca domestica
	Introduction
	Methods
	Results
	Discussion
	Bibliography
	Supplementary information


